US ERA ARCHIVE DOCUMENT

Solutia Inc. 575 Maryville Centre Drive St. Louis, Missouri 63141

Tel: 314-674-3312 Fax: 314-674-8808

gmrina@solutia.com

November 9, 2011

Mr. Kenneth Bardo - LU-9J U.S. EPA Region V Corrective Action Section 77 West Jackson Boulevard Chicago, IL 60604-3507 VIA FEDEX

Re: Long-Term Monitoring Program

3rd Quarter 2011 Data Report

Solutia Inc., W. G. Krummrich Plant, Sauget, IL

Dear Mr. Bardo:

Enclosed please find the Long-Term Monitoring Program 3rd Quarter 2011 Data Report for Solutia Inc.'s W. G. Krummrich Plant, Sauget, IL. (The initial report of the related Supplemental Groundwater Monitoring Program is being submitted separately.)

If you have any questions or comments regarding this report, please contact me at (314) 674-3312 or gmrina@solutia.com

Sincerely,

Gerald M. Rinaldi

Manager, Remediation Services

u h hills.

Enclosure

cc: Distribution List

DISTRIBUTION LIST

Long-Term Monitoring Program
3rd Quarter 2011 Data Report
Solutia Inc., W. G. Krummrich Plant, Sauget, IL

USEPA

Stephanie Linebaugh USEPA Region 5 - SR6J, 77 West Jackson Boulevard, Chicago, IL 60604

Booz Allen Hamilton

Dan Briller Booz Allen Hamilton, 8283 Greensboro Drive, McLean, VA 22102

Solutia

Brett Shank 500 Monsanto Avenue, Sauget, IL 62206-1198

3 ^{R D} QUARTER 2011 DATA REPORT

LONG-TERM MONITORING PROGRAM

SOLUTIA INC. W.G. KRUMMRICH FACILITY SAUGET, ILLINOIS

Prepared for
Solutia Inc.
575 Maryville Centre Drive
St. Louis, Missouri 63141

November 2011

URS Corporation 1001 Highland Plaza Drive West, Suite 300 St. Louis, MO 63110 (314) 429-0100 Project: 21562682.00001

1.0	INTRODUCTION	1
2.0	FIELD PROCEDURES	. 2
3.0	LABORATORY PROCEDURES	5
4.0	QUALITY ASSURANCE	5
5.0	OBSERVATIONS	. 6
6.0	REFERENCES	. 8

List of Figures

Figure 1	Site Location Map
Figure 2	Long-Term Monitoring Program Well Locations
Figure 3	Potentiometric Surface Map Middle/Deep Hydrogeologic Unit
Figure 4	Benzene and Total Chlorobenzenes Results
List of Tables	

Table 1 Monitoring Well Gauging Information Table 2 Groundwater Analytical Results

Table 3 Monitored Natural Attenuation Results Summary

List of Appendices

Appendix A	Groundwater Purging and Sampling Forms
Appendix B	Chains-of-Custody
Appendix C	Quality Assurance Report
Appendix D	Groundwater Analytical Results (with Data Review/Validation Reports)
Appendix E	Microbial Insights Data Package

1.0 INTRODUCTION

This report presents the results of the 3rd Quarter 2011 (3Q11) sampling event performed at the Solutia Inc. (Solutia) W.G. Krummrich (WGK) Facility located in Sauget, Illinois (Site). This sampling event was conducted in accordance with the Revised Long-Term Monitoring Program (LTMP) Work Plan (Solutia 2009). The Site location is presented in **Figure 1**.

The LTMP was designed to evaluate the effectiveness of monitored natural attenuation (MNA), including: 1) a clear and meaningful trend of decreasing contaminant mass; 2) data that indirectly demonstrate the types and rates of natural attenuation processes active at the site; and 3) data that directly demonstrate the occurrence of biodegradation processes at the site.

Groundwater Sampling Location and Frequency - As specified in the Revised LTMP Work Plan, groundwater samples will be collected for eight quarters from five monitoring wells downgradient of the Former Chlorobenzene Process Area (CPA-MW-1D through CPA-MW-5D) and five monitoring wells downgradient of the Former Benzene Storage Area (BSA-MW-1S and BSA-MW-2D through BSA-MW-5D) to assess attenuation processes in the American Bottoms aquifer, as impacted groundwater from these source areas migrates toward and discharges to the Mississippi River.

Monitoring wells BSA-MW-1S, 2D, 3D, 4D and 5D are located within the limiting flow lines downgradient of the Former Benzene Storage Area. Monitoring wells CPA-MW-1D, 2D, 3D, 4D and 5D are located within the limiting flow lines downgradient of the Former Chlorobenzene Process Area. Source areas and monitoring well locations are presented in **Figure 2**.

Quarterly sampling under the Long-Term Monitoring Program commenced 3Q08 and a total of thirteen guarters have been completed as of 3Q11.

Groundwater Sampling Parameters - During the 3Q11 groundwater sampling event, groundwater samples were analyzed for benzene, chlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, and 1,4-dichlorobenzene using USEPA Method 8260B to demonstrate a trend of decreasing contaminant mass and/or concentrations over time. In accordance with USEPA comments regarding the Long-Term Monitoring Plan, the following constituents were added to the groundwater monitoring parameter list on a semi-annual basis (1st and 3rd Quarters):

- 4-Chloroaniline: CPA-MW-3D, CPA-MW-4D, and CPA-MW-5D
- 2-Chlorophenol: All wells
- 1, 2, 4-Trichlorobenzene: All wells
- 1,4-Dioxane: BSA-MW-2D, BSA-MW-3D, BSA-MW-4D, and BSA-MW-5D

Samples for analysis of MNA parameters were collected from all ten long-term monitoring program wells. Evaluation of the types of active natural attenuation processes at the site is based on the following key geochemical parameters:

Electron Donors: Organic Carbon (Total and Dissolved)

Electron Acceptors: Iron (Total and Dissolved)

Manganese (Total and Dissolved)

Nitrate Sulfate

Biodegradation Byproducts: Carbon Dioxide

Chloride Methane

Biodegradation Indicators: Alkalinity

Direct demonstration of the occurrence of biodegradation processes is completed quarterly utilizing Microbial Insights (www.microbe.com) Bio-Trap® Samplers for Phospholipid Fatty Acid (PLFA) Analysis, along with Stable Isotope Probes (SIPs) for benzene or chlorobenzene detection in select wells.

Surface Water and Sediment Sampling – Surface water and sediment samples are collected during winter low flow conditions and during summer low flow conditions as part of the site long-term monitoring program. This typically coincides with the 1st and 3rd quarter groundwater sampling events. The objective of the surface water and sediment monitoring program is to assess the impact of contaminated groundwater discharging to the Mississippi River north of the Groundwater Migration Control System (GMCS). However, due to high river levels during 3Q11 sampling activities, surface water and sediment samples could not be collected.

2.0 FIELD PROCEDURES

URS Corporation (URS) conducted 3Q11 sampling activities from August 18 through August 26, 2011. Activities were completed in accordance with procedures outlined in the Revised LTMP Work Plan, including the collection of appropriate quality assurance and quality control (QA/QC) samples. The following section summarizes field investigative procedures:

Groundwater Level Measurements – URS personnel used an electronic oil/water interface probe to measure depth to static groundwater levels and if present, the thickness of non-aqueous phase liquid (NAPL), to 0.01 feet. Depth to groundwater measurements were collected on August 11 and 12, 2011 from accessible existing wells (i.e., BSA-, CPA-, GM-, K-, PS-MW- and PMA-series) and piezometers clusters (installed for the Sauget Area 2 RI/FS and WGK CA-750 Environmental Indicator projects) specified in the Revised LTMP Work Plan (**Figure 3**). NAPL was not detected within any of the ten LTMP monitoring wells.

Well gauging information for the 3Q11 event is presented in **Table 1**. As the middle and deep hydrogeologic units are the primary migration pathway for constituents present in groundwater at the WGK Facility, a groundwater potentiometric surface map based on water level data from

wells screened in the Middle Hydrogeologic Unit (MHU) and Deep Hydrogeologic Unit (DHU) is presented as **Figure 3**.

Groundwater Sampling – Low-flow sampling techniques were used for groundwater sample collection. At each monitoring well, disposable, low-density polyethylene tubing was attached to a submersible pump, which was then lowered into the well to the middle of the screened interval. Monitoring wells were purged at a rate of 300 to 500 mL/minute to minimize drawdown. If significant drawdown occurred, flow rates were reduced.

Drawdown was measured periodically throughout purging to ensure that it did not exceed 25% of the distance between the pump intake and the top of the screen. Once the flow rate and drawdown were stable, field measurements were collected approximately every three to five minutes. Purging of a well was considered complete when the following water quality parameters remained stable over three consecutive flow-through cell volumes:

Parameter	Stabilization Guidelines				
Dissolved Oxygen (DO)	+/- 10% or +/-0.2 mg/L, whichever is greatest				
Oxidation-Reduction Potential (ORP)	+/- 20 mV				
pН	+/- 0.2 units				
Specific Conductivity	+/- 3%				

Sampling commenced upon completion of purging. Prior to sample collection, the flow-through cell was bypassed to allow for collection of uncompromised groundwater. Samples were collected at a flow rate less than or equal to the rate at which stabilization was achieved. Sample containers were filled based on laboratory analysis to be performed, in the following order:

- Volatile Organic Compounds (VOCs)
- Gas Sensitive Parameters (e.g., methane, carbon dioxide)
- Semivolatile Organic Compounds (SVOCs)
- General Chemistry (i.e., alkalinity, chloride, total and dissolved iron, total and dissolved manganese, nitrate, sulfate, and total and dissolved organic carbon)
- Field Parameters (i.e., dissolved oxygen, ferrous iron, and oxidation-reduction potential).

Samples collected for ferrous iron, dissolved iron and dissolved manganese analysis were filtered in the field using in-line 0.2 micron disposable filters, represented by a notation of "F (0.2)" in the sample nomenclature.

Quality assurance/quality control (QA/QC) samples consisting of analytical duplicates (AD) and equipment blanks (EB) were collected at a rate of 10% and matrix spike/matrix spike duplicates (MS/MSD) were collected at a rate of 5%. In addition, trip blanks accompanied each shipment containing samples for VOC analysis.

Each investigative or QC sample was labeled immediately following collection. Each sample identification number consisted of the following nomenclature "AAA-MW#-MMYY-QAC" where:

- "AAA" denotes "Chlorobenzene Process Area (CPA)" or "Benzene Storage Area (BSA)"and "MW-#" denotes "Monitoring Well Number":
- MMYY Month and year of sampling quarter, e.g.: Third quarter (August) 2011, 0811
- "QAC" denotes QA/QC sample
 - o AD analytical duplicate
 - o EB equipment blank
 - MS or MSD Matrix Spike or Matrix Spike Duplicate

Upon collection and labeling, sample containers were immediately placed inside an iced cooler, packed in such a way as to help prevent breakage and maintain inside temperature at or below approximately 4°C. Field personnel recorded the project identification and number, sample description/location, required analysis, date and time of sample collection, type and matrix of sample, number of sample containers, preservative used (if applicable), analysis requested/comments, and sampler signature/date/time, with permanent ink on the chain-of-custody (COC). Prior to shipment, coolers were sealed between the lid and sides of the cooler with a custody seal, and then shipped to TestAmerica in Savannah, Georgia by means of an overnight delivery service. Field sampling data sheets are included in **Appendix A**, while copies of COCs are included in **Appendix B**.

Field personnel and equipment were decontaminated according to procedures specified in the Revised LTMP Work Plan to ensure the health and safety of those present, maintain sample integrity, and minimize movement of contamination between the work area and off-site locations. Equipment used on-site was decontaminated prior to beginning work, between sampling locations and/or uses, and prior to demobilizing from the site. Non-disposable purging and sampling equipment was decontaminated between each sample acquisition by washing with an Alconox® or equivalent detergent wash, a potable water rinse, and a distilled water rinse. Personnel and small equipment decontamination was performed at the sample locations. Disposable sampling equipment, such as gloves were collected and bagged on a daily basis and managed in accordance with Solutia procedures. Purge water was containerized and handled per Solutia procedures.

Biodegradation Evaluation Sampling - Bio-Trap[®] samplers and SIPs provided by Microbial Insights, Inc. (Rockford, TN), were utilized in the LTMP to provide information regarding biodegradation potential of the Shallow Hydrogeologic Unit (SHU), the MHU and the DHU. Bio-Trap[®] samplers are passive sampling tools which, over time, collect microbes across a membrane that serves as the sampling matrix. SIPs are similar passive sampling tools that are analyzed to measure the degradation of a specific contaminant (i.e., benzene and chlorobenzene).

On July 19, 2011, URS field personnel deployed Bio-Trap[®] samplers in each of the ten LTMP wells for PLFA analysis. A benzene SIP and a chlorobenzene SIP were placed in monitoring wells BSA-MW-2D and CPA-MW-3D, respectively. Bio-Trap[®] samplers and SIPs were tied to nylon line attached to the well cap and lowered to the middle of the well screen.

On September 11, 2011, the Bio-Trap[®] samplers and SIPs were retrieved from the wells, sealed in Ziploc[®] bags, labeled with the proper well identification and placed in an iced sample cooler with a signed COC. Sealed sample coolers were sent to Microbial Insights, Inc. for analysis.

3.0 LABORATORY PROCEDURES

Samples were analyzed by TestAmerica for VOCs, SVOCs and MNA parameters, using the following methodologies:

- VOCs, via USEPA SW-846 Method 8260B
- SVOCs, via USEPA SW-846 Method 8270C
- MNA parameters: alkalinity (310.1), carbon dioxide (310.1), chloride (325.2), total and dissolved iron (6010B), total and dissolved manganese (6010B), dissolved gases (RSK 175), nitrate (353.2), sulfate (375.4), and total and dissolved organic carbon (415.1).

Dichlorobenzenes were quantitated using Method 8260B because of potential volatilization losses associated with Method 8270C. Laboratory results were provided in electronic and hard copy formats.

4.0 QUALITY ASSURANCE

Analytical data were reviewed for quality and completeness, as described in the Revised Long Term Monitoring Work Plan. Data qualifiers were added, as appropriate, and are included on the data tables and the laboratory result pages. The Quality Assurance report is included as **Appendix C**. The laboratory report, along with data review and validation reports are included in **Appendix D**.

A total of 14 groundwater samples (ten investigative samples, one field duplicate, one MS/MSD pair and one equipment blank) were prepared and analyzed by TestAmerica Savannah for combinations of VOCs, SVOCs, dissolved gases, metals, and general chemistry. In addition, three trip blanks were included in the coolers that contained samples for VOC analysis and were analyzed for VOCs. The results for the various analyses were submitted as sample delivery group (SDG) KPS065.

The samples contained in SDG KPS065 are listed below:

KPS065								
BSA-MW-1S-0811	BSA-MW-3D-0811-EB							
CPA-MW-2D-0811	BSA-MW-4D-0811							
CPAMW-2D-0811-AD	CPA-MW-4D-0811							
CPA-MW-1D-0811	BSA-MW-5D-0811							
BSA-MW-2D-0811	TB-1							
CPA-MW-5D-0811	TB-2							
BSA-MW-3D-0811	TB-3							

Evaluation of the groundwater analytical data followed procedures outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (USEPA 2008), USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (USEPA 2004), and the Revised Long-Term Monitoring Program (LTMP) Work Plan (Solutia 2009).

Based on the above mentioned criteria, groundwater results reported for the analyses performed were accepted for their intended use. Acceptable levels of accuracy and precision, based on MS/MSD, laboratory control sample (LCS), surrogate and field duplicate data were achieved for this SDG to meet the project objectives. Completeness which is defined to be the percentage of analytical results which are judged to be valid, including estimated detect/non-detect (J/UJ) data was 100 percent.

5.0 OBSERVATIONS

Groundwater analytical detections and MNA results for the 3Q11 LTMP sampling event are presented in **Tables 2** and **3**, respectively. Benzene, chlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,4-dioxane, 4-chloroaniline, 2-chlorophenol and 1,2,4-trichlorobenzene were reported in samples collected from the LTMP wells during this sampling event. Each of these constituents is discussed below:

Benzene – Benzene was detected in samples collected from seven of the ten wells, at concentrations ranging from 28 μ g/L (BSA-MW-4D) to 520,000 μ g/L (BSA-MW-1S).

Downgradient of the Former Benzene Storage Area, benzene was detected in the DHU at an estimated concentration of 220,000 μ g/L (BSA-MW-2D) and 52 μ g/L (BSA-MW-3D). Near the river north of the Sauget Area 2 Groundwater Migration Control System (SA2 GMCS), benzene was detected in the DHU at concentrations of 28 μ g/L (BSA-MW-4D).

Benzene was detected at the Former Chlorobenzene Process Area at an estimated concentration of 6,700 μ g/L (CPA-MW-1D). Downgradient of the Former Chlorobenzene Storage Area, benzene was detected in the DHU at a concentration of 40 μ g/L (CPA-MW-3D)

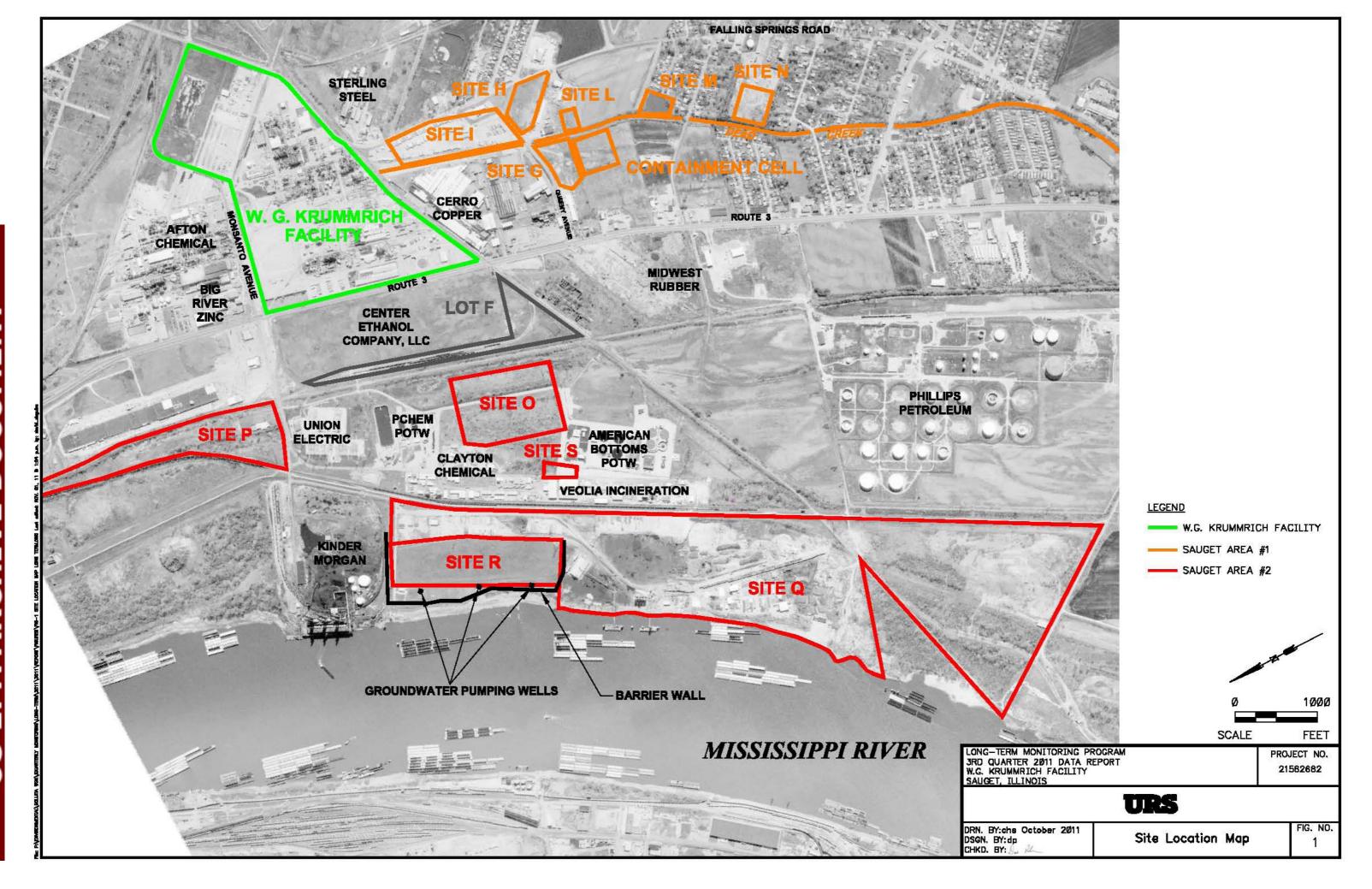
and an estimated 50 μ g/L (CPA-MW-4D). Benzene was not detected in the DHU near the river north of SA2 GMCS at monitoring well CPA-MW-5D.

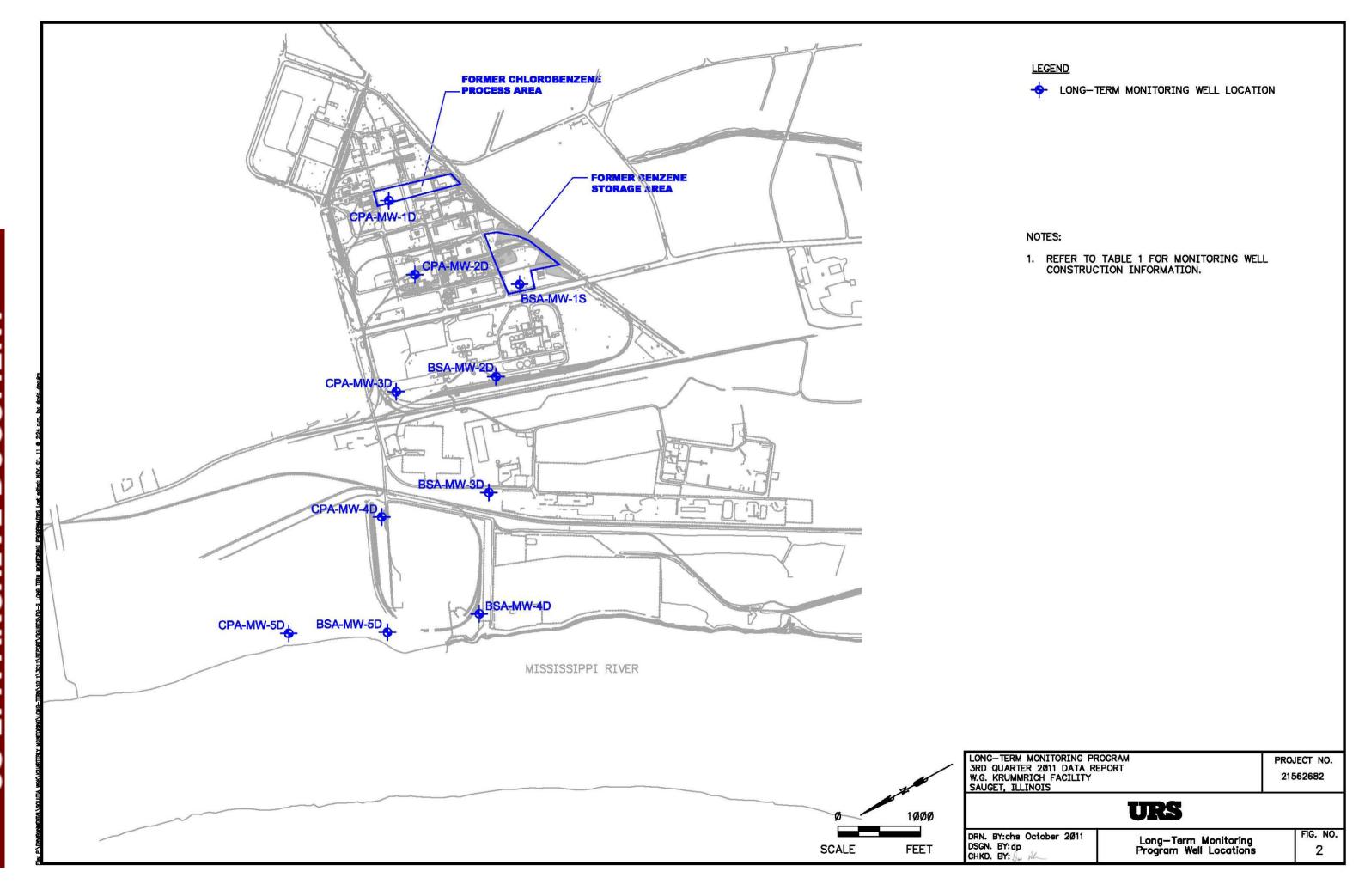
Chlorobenzenes (Total) – Total chlorobenzenes (e.g., sum of chlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, and 1,4, dichlorobenzene) were detected in eight of the ten wells sampled in 3Q11, at concentrations ranging from 390 μ g/L (CPA-MW-4D) to 64,300 μ g/L (CPA-MW-1D).

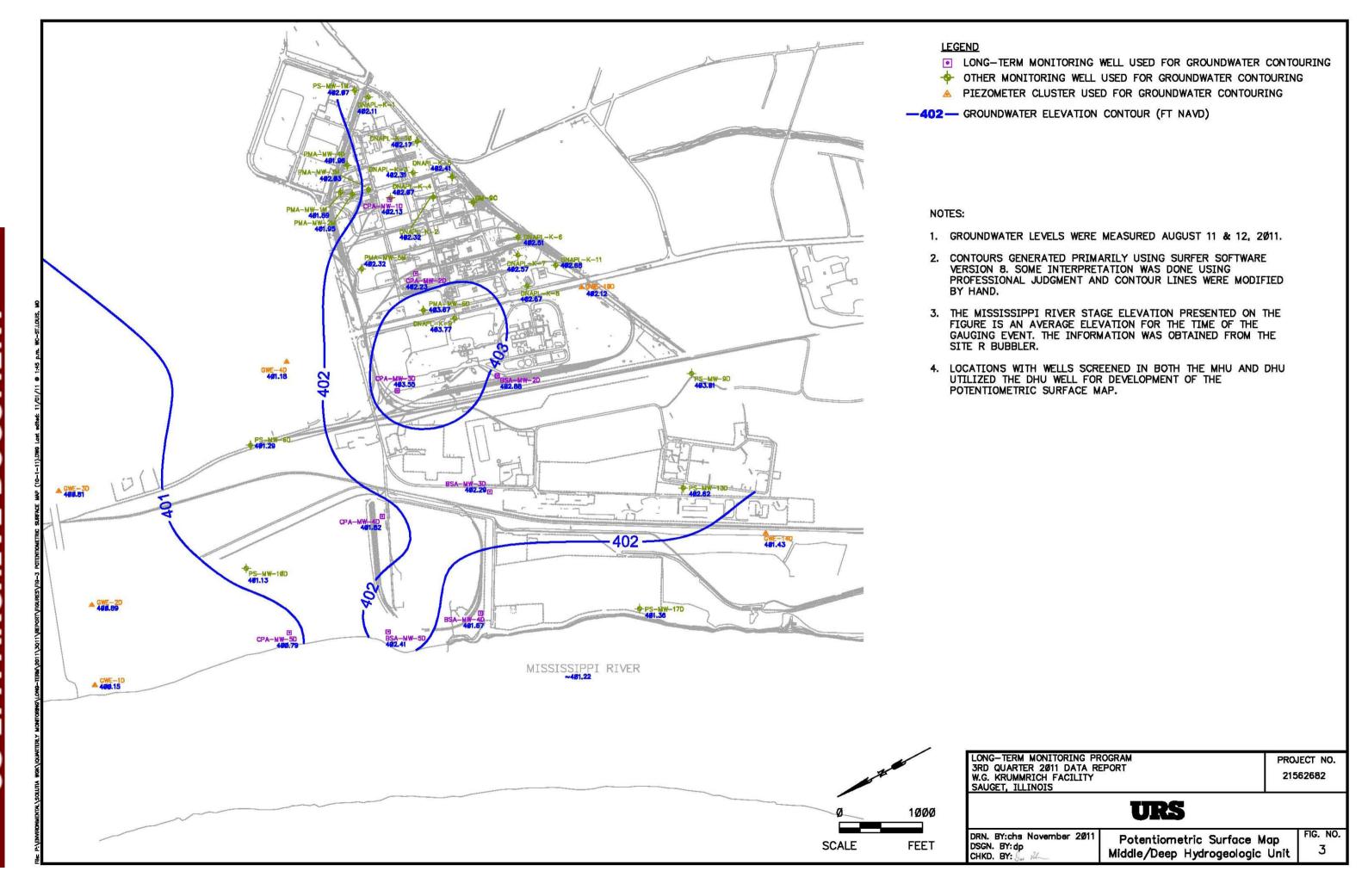
Downgradient of the Former Chlorobenzene Storage Area, total chlorobenzenes were detected in the DHU at concentrations of 13,700/13,300 μ g/L at the North Tank Farm (CPA-MW-2D and duplicate), along with concentrations of 460 μ g/L (CPA-MW-3D) and 390 μ g/L (CPA-MW-4D). Total chlorobenzenes were detected in the DHU near the river north of SA2 GMCS at a concentration of 1,200 μ g/L (CPA-MW-5D).

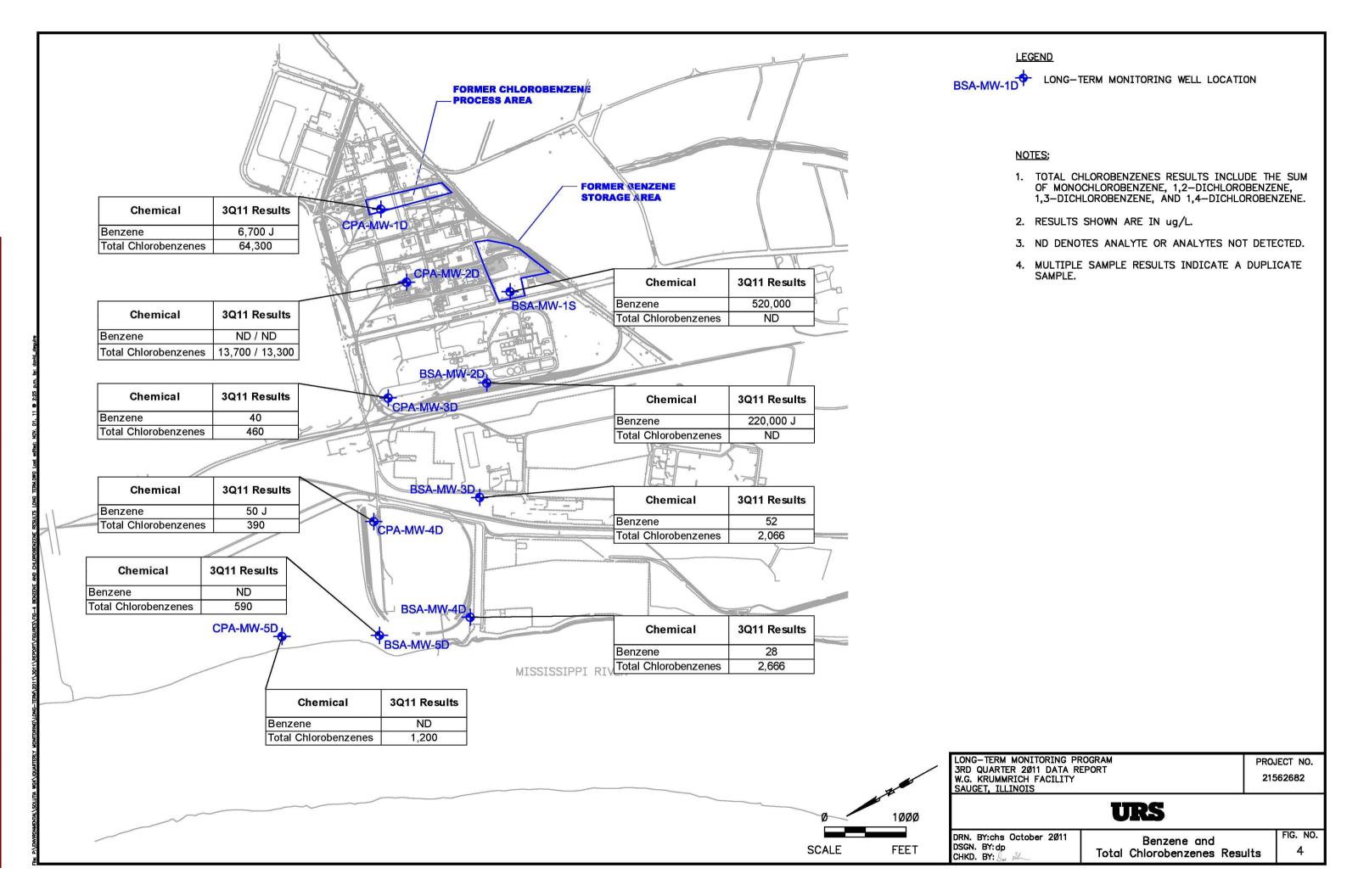
Downgradient of the Former Benzene Storage Area, total chlorobenzenes were detected at a concentration of 2,066 μ g/L (BSA-MW-3D). North of the SA2 GMCS, near the river, total chlorobenzenes were detected in the DHU at concentrations of 2,666 μ g/L (BSA-MW-4D) and 590 μ g/L (BSA-MW-5D).

Figure 4 displays benzene and total chlorobenzenes results from the 3Q11 sampling event.


- **1,4-Dioxane** Groundwater samples were collected from four monitoring wells downgradient of the Former Benzene and Chlorobenzene Storage Area to analyze for 1,4-dioxane (BSA-MW-2D, BSA-MW-3D, BSA-MW-4D, and BSA-MW-5D). 1,4-Dioxane was detected in monitoring wells BSA-MW-2D and BSA-MW-4D at concentrations of 36 μg/L and 32 μg/L, respectively.
- **4-Chloroaniline** Groundwater samples for 4-chloroaniline analysis were collected from monitoring wells CPA-MW-3D, CPA-MW-4D and CPA-MW-5D. 4-chloroaniline was detected in monitoring well CPA-MW-4D (140 μg/L).
- **2-Chlorophenol** Of the ten samples available for analysis during 3Q11, 2-chlorophenol was detected in four of the LTMP wells at concentrations ranging from 11 μ g/L (CPA-MW-5D) to 22 μ g/L (CPA-MW-2D and CPA-MW-2D-AD); both located along the limiting flow lines. 2-Chlorophenol was also detected in monitoring wells BSA-MW-3D and BSA-MW-4D at concentrations of 12 μ g/L and 17 μ g/L, respectively.
- **1,2,4-Trichlorobenzene** Samples from the ten LTMP wells were analyzed for 1,2,4-Trichlorobenzene. Of the wells sampled, only the sample from monitoring well CPA-MW-1D indicated a detection, with a concentration of 910 μ g/L.


Monitored Natural Attenuation – The MNA results for this quarter are presented in **Table 3**. PLFA and SIP laboratory results are included in **Appendix E**.


6.0 REFERENCES


- Solutia Inc, 2009. Revised Long Term Monitoring Program Work Plan, Solutia Inc., W.G. Krummrich Facility, Sauget, Illinois, May 2009.
- USEPA, 2004. Contract Laboratory Program National Functional Guidelines for Inorganic Data Review.
- USEPA, 2008. Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review

Figures

Tables

Table 1
Monitoring Well Gauging Information

			Construct	ion Details			August 11	- 12, 2011
Well ID	Ground Elevation (feet)*	Casing Elevation* (feet)	Depth to Top of Screen (feet bgs)	Depth to Bottom of Screen (feet bgs)	Top of Screen Elevation* (feet)	Bottom of Screen Elevation* (feet)	Depth to Water (feet btoc)	Water Elevation* (feet)
Shallow Hydrogeolo	gic Unit (SHL	J 395-380 feet	NAVD 88)					
BSA-MW-1S	409.49	412.31	19.68	24.68	389.81	384.81	9.72	402.59
Middle Hydrogeolog	jic Unit (MHU	380-350 feet I	NAVD 88)					
PMA-MW-1M	410.32	410.08	54.54	59.54	355.78	350.78	8.19	401.89
PMA-MW-2M	412.26	411.93	56.87	61.87	355.39	350.39	9.98	401.95
PMA-MW-3M	412.36	412.10	57.07	62.07	355.29	350.29	10.07	402.03
PMA-MW-5M	411.27	410.97	52.17	57.17	359.10	354.10	8.65	402.32
PS-MW-1M	409.37	412.59	37.78	42.78	371.59	366.59	10.52	402.07
Deep Hydrogeologic	Unit (DHU 35	0 feet NAVD	88 - Bedrock)					
BSA-MW-2D	412.00	415.13	68.92	73.92	343.08	338.08	12.25	402.88
BSA-MW-3D	412.91	415.74	107.02	112.02	305.89	300.89	13.45	402.29
BSA-MW-4D	425.00	424.69	118.54	123.54	306.46	301.46	23.02	401.67
BSA-MW-5D	420.80	420.49	115.85	120.85	304.95	299.95	18.08	402.41
CPA-MW-1D	408.62	408.32	66.12	71.12	342.50	337.50	6.19	402.13
CPA-MW-2D	408.51	408.20	99.96	104.96	308.55	303.55	5.97	402.23
CPA-MW-3D	410.87	410.67	108.20	113.20	302.67	297.67	7.12	403.55
CPA-MW-4D	421.57	421.20	116.44	121.44	305.13	300.13	19.38	401.82
CPA-MW-5D	411.03	413.15	107.63	112.63	303.40	298.40	12.36	400.79
DNAPL-K-1	413.07	415.56	108.20	123.20	304.87	289.87	13.45	402.11
DNAPL-K-2	407.94	407.72	97.63	112.63	310.31	295.31	5.40	402.32
DNAPL-K-3	412.13	411.91	104.80	119.80	307.33	292.33	9.60	402.31
DNAPL-K-4	409.48	409.15	102.55	117.55	306.93	291.93	7.08	402.07
DNAPL-K-5	412.27	411.91	102.15	117.15	310.12	295.12	9.50	402.41
DNAPL-K-6	410.43	410.09	102.47	117.47	307.96	292.96	7.58	402.51
DNAPL-K-7	408.32	407.72	100.40	115.40	307.92	292.92	5.15	402.57
DNAPL-K-8	408.56	411.38	102.65	117.65	305.91	290.91	8.71	402.67

Table 1
Monitoring Well Gauging Information

				August 11	- 12, 2011			
Well ID	Ground Elevation (feet)*	Casing Elevation* (feet)	Depth to Top of Screen (feet bgs)	Depth to Bottom of Screen (feet bgs)	Top of Screen Elevation* (feet)	Bottom of Screen Elevation* (feet)	Depth to Water (feet btoc)	Water Elevation* (feet)
Deep Hydrogeologi								
DNAPL-K-9	406.45	405.97	97.42	112.42	309.03	294.03	2.20	403.77
DNAPL-K-10	413.50	413.25	105.43	120.43	308.07	293.07	11.08	402.17
DNAPL-K-11	412.20	411.78	105.46	120.46	306.74	291.74	9.10	402.68
GM-9C	409.54	411.21	88.00	108.00	321.54	301.54	16.50	394.71
GWE-1D	412.80	415.60	117.00	127.00	295.80	285.80	15.45	400.15
GWE-2D	417.45	417.14	127.00	137.00	290.45	280.45	16.25	400.89
GWE-3D	415.03	417.66	104.60	114.60	313.06	303.06	16.85	400.81
GWE-4D	406.05	405.74	74.00	80.00	332.05	326.05	4.56	401.18
GWE-10D	410.15	412.87	102.50	112.50	307.65	297.65	10.75	402.12
GWE-14D	420.47	422.90	90.00	96.00	330.47	324.47	21.47	401.43
PMA-MW-4D	411.22	410.88	68.84	73.84	342.38	337.38	8.92	401.96
PMA-MW-6D	407.63	407.32	96.49	101.49	311.14	306.14	3.65	403.67
PS-MW-6D	404.11	406.63	99.80	104.80	304.31	299.31	5.34	401.29
PS-MW-9D	403.92	403.52	100.40	105.40	303.52	298.52	0.51	403.01
PS-MW-10D	409.63	412.18	101.23	106.23	308.40	303.40	11.05	401.13
PS-MW-13D	405.80	405.53	106.08	111.08	299.72	294.72	2.91	402.62
PSMW-17D	420.22	423.26	121.25	126.25	298.97	293.97	21.90	401.36

^{* -} Elevation based upon North American Vertical Datum (NAVD) 88 datum

bgs - below ground surface

btoc - Below top of casing

Table 2
Groundwater Analytical Results

			V	OC (µg/L)		SVOC (μg/L)					
Sample ID	Sample Date	Benzene	Chlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	4-Chloroaniline	2-Chlorophenol	1,4-Dioxane	1,2,4-Trichlorobenzene	
BENZENE STORAGE A	REA										
BSA-MW-1S-0811	8/15/2011	520,000	<5,000	<5,000	<5,000	<5,000	NA	<10	NA	<10	
BSA-MW-2D-0811	8/16/2011	220,000 J	<2,000	<2,000	<2,000	<2,000	NA	<9.5	36	<9.5	
BSA-MW-3D-0811	8/16/2011	52	1,500	24	22	520	NA	12	<9.6	<9.6	
BSA-MW-4D-0811	8/17/2011	28	2,600	<20	32	34	NA	17	32	<9.6	
BSA-MW-5D-0811	8/17/2011	<10	590	<10	<10	<10	NA	<9.5	<9.5	<9.5	
CHLOROBENZENE PRO	DCESS AREA										
CPA-MW-1D-0811	8/15/2011	6,700 J	19,000 J	26,000 J	2,300 * J	17,000 J	NA	<48	NA	910	
CPA-MW-2D-0811	8/15/2011	<200	12,000	<200	<200	1,700 J	NA	22	NA	<11	
CPA-MW-2D-0811-AD	8/15/2011	<200	12,000	<200	<200	1,300 J	NA	22	NA	<9.8	
CPA-MW-3D-0811	8/16/2011	40	460	<5	<5	<5	<19	<9.5	NA	<9.5	
CPA-MW-4D-0811	8/17/2011	50 J	390 J	<2	<2	<2	140	<19	NA	<19	
CPA-MW-5D-0811	8/16/2011	<20	1,200	<20	<20	<20	<19	11	NA	<9.5	

Notes:

μg/L = micrograms per liter

< = Result is non-detect, less than the reporting limit given.

BOLD indicates concentration greater than reporting limit.

* = LCS, LCSD, MS, MSD, MD or surrogate exceeds the control limits.

AD = Analytical Duplicate

J = Estimated value

NA = Sample not analyzed for select analyte in accordance with Revised LTMP Work Plan

W.G. Krummrich Facility -Sauget, Illinois Long-Term Monitoring Program 3rd Quarter 2011 Data Report

Table 3
Monitored Natural Attenuation Results Summary

Sample ID	Sample Date	Alkalinity (mg/L)	Carbon Dioxide (mg/L)	Chloride (mg/L)	Dissolved Oxygen (mg/L)	Ethane (ug/L)	Ethylene (ug/L)	Ferrous Iron (mg/L)	Iron (mg/L)	Iron, Dissolved (mg/L)	Manganese (mg/L)	Manganese, Dissolved (mg/L)	Methane (ug/L)	Nitrogen, Nitrate (mg/L)	Sulfate as SO4 (mg/L)	Dissolved Organic Carbon (mg/L)	Total Organic Carbon (mg/L)	ORP (mV)
Benzene Storage Area	8/15/2011	000	20	040		-4.4	-41	ı	4.5	1	0.00		7000	40.05	450	ı	0.0	400
BSA-MW-1S-0811	8/15/2011	860	39	240	0	<1.1	<1	1.79	4.5	4.4	0.63	0.62	7600	<0.05	<50	6.6	6.9	-160
BSA-MW-1S-F(0.2)-0811 BSA-MW-2D-0811	8/16/2011	050	40	440	0.04	44		1.79	4.0	4.4	0.00	0.62	7400	10.05	<5	0.0	_	404
BSA-MW-2D-0811 BSA-MW-2D-F(0.2)-0811	8/16/2011	650	42	110	0.01	11	<1	>3.3	4.9	4.8	0.66	0.66	7100	<0.05	<5	6.1	6	-191
BSA-WW-3D-F(0.2)-0611	8/16/2011	480	27	90	0.07	1.4	1.2	>3.3	11	4.0	0.56	0.00	190	<0.05	230	0.1	4.8	-139
BSA-MW-3D-F(0.2)-0811	8/16/2011	400	21	90	0.07	1.4	1.2	>3.3	11	11	0.50	0.55	190	<0.05	230	4.9	4.0	-139
BSA-WW-3D-F(0.2)-0611 BSA-MW-4D-0811	8/17/2011	640	54	150	0.03	3.7	<1	>3.3	8.5	11	0.64	0.55	150	<0.05	66	4.9	6.4	-180
BSA-MW-4D-F(0.2)-0811	8/17/2011	040	34	150	0.03	3.1	`	2.94	0.5	8.7	0.04	0.66	150	<0.05	00	6.1	0.4	-100
BSA-MW-5D-0811	8/17/2011	700	51	250	0.02	10	<1	2.94	15	0.7	0.55	0.00	54	<0.05	380	0.1	5	-121
BSA-MW-5D-F(0.2)-0811	8/17/2011	700	31	230	0.02	10	`	>3.3	10	12	0.55	0.58	54	<0.05	300	5	3	-121
Chlorobenzene Process A						L		>3.3		12		0.56				5		
CPA-MW-1D-0811	8/15/2011	1000	<5	140	0	36	<1		2.7	l	0.23		13000	<0.5	15		25	-122
CPA-WW-1D-0011 CPA-MW-1D-F(0.2)-0811	8/15/2011	1000	/5	140	U	30	`1	>3.3	2.1	1.6	0.23	0.13	13000	\0.5	15	57	20	-122
CPA-WW-1D-P(0.2)-0811 CPA-MW-2D-0811	8/15/2011	590	41	65	0.05	4.1	<1	~3.3	5.6	1.0	0.37	0.13	3600	<0.05	<5	31	12	-132
CPA-MW-2D-F(0.2)-0811	8/15/2011	000	71	0.0	0.00	7.1	- '1		0.0	5.7	0.51	0.38	3000	٦٥.٥٥		12	14	-102
CPA-MW-3D-0811	8/16/2011	560	31	110	0.04	5.2	<1		10	0.1	0.56	0.00	1500	<0.05	<5	12	10	-185
CPA-MW-3D-F(0.2)-0811	8/16/2011	000	01	110	0.04	0.2	''		10	10	0.00	0.57	1000	-0.00	-,0	9.9	10	100
CPA-MW-4D-0811	8/17/2011	760	51	300	0	16	<1		11	- 10	0.24	0.07	8700	<0.05	<5	0.0	5.9	-137
CPA-MW-4D-F(0.2)-0811	8/17/2011	. 50		- 550				>3.3		11	J.21	0.24	3.00	3.00		6.3	<u> </u>	
CPA-MW-5D-0811	8/16/2011	380	96	310	0.36	<1.1	<1	3.0	82		2.4		10	<0.05	1500	2.0	3.9	-109
CPA-MW-5D-F(0.2)-0811	8/16/2011							>3.3		84		2.5				4		

Notes:

DO and ORP were measured in the field using YSI 6920 equipped with a flow-thru cell. Values presented represent final measurements before sampling Ferrous Iron readings were measured in the field using a colorimeter after the groundwater passed through a 0.2 µm filter

F(0.2) = Sample was filtered utilizing a 0.2 μ m filter during sample collection

mg/L = milligrams per liter

mV = millivolts

ug/L = micrograms per liter

< = Result is non-detect, less than the reporting limit given

A blank space indicates sample not analyzed for select analyte

Appendix A Groundwater Purging and Sampling Forms

Project Information:		Pump Information:	
Operator Name	N MCNURLEN	Pump Model/Type	SS MONSOON
Company Name	URS	Tubing Type	LDPE
Project Name	SOLUTIA	Tubing Diameter	0.19 [in]
Site Name	3Q11 GW	Tubing Length	31 [ft]
		Pump placement from TOC	25 [ft]

Well Information:		Pumping information:	
Well Id	BSA-MW-1S	Final pumping rate	500 [mL/min]
Well diameter	2 [in]	Flowcell volume	768.32 [mL]
Well total depth	27.31 [ft]	Calculated Sample Rate	93 [sec]
Depth to top of screen	22.49 [ft]	Sample rate	120 [sec]
Screen length	60 [in]	Stabilized drawdown	0.21 [ft]
Depth to Water	9.99 [ft]		
			<u> </u>

Low-Flow Sampling Stabilization Summary

	Time	Temp [F]	pH [pH]	Cond [µS/cm @25C]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.2	+/-20	+/-1	+/-0.2	+/-20
				+/-3 %	+/-10 %	+/-10 %	
	9:26:03	64.23	7.38	2089.22	116.61	0.15	-158.56
	9:28:06	64.12	7.38	2096.84	542.90	0.15	-159.50
Last 5 Readings	9:30:10	64.09	7.37	2104.62	887.84	0.14	-158.52
	9:32:15	64.05	7.37	2106.03	5.64	0.01	-159.88
	9:34:20	63.96	7.37	2105.44	7.92	0.00	-160.09
	9:30:10	-0.03	0.00	7.78	344.95	-0.01	0.99
Variance in last 3 readings	9:32:15	-0.04	0.00	1.41	-882.21	-0.12	-1.37
	9:34:20	-0.08	0.00	-0.59	2.28	-0.01	-0.21

Project Information:		Pump Information:	
Operator Name	N MCNURLEN	Pump Model/Type	SS MONSOON
Company Name	URS	Tubing Type	LDPE
Project Name	SOLUTIA	Tubing Diameter	0.19 [in]
Site Name	3Q11 GW	Tubing Length	80.55 [ft]
		Pump placement from TOC	74.55 [ft]

Well Information:		Pumping information:	
Well Id	BSA-MW-2D	Final pumping rate	400 [mL/min]
Well diameter	2 [in]	Flowcell volume	1049.1 [mL]
Well total depth	77.02 [ft]	Calculated Sample Rate	158 [sec]
Depth to top of screen	72.05 [ft]	Sample rate	158 [sec]
Screen length	60 [in]	Stabilized drawdown	0.03 [ft]
Depth to Water	12.75 [ft]		

Low-Flow Sampling Stabilization Summary

	Time	Temp [F]	pH [pH]	Cond [µS/cm @25C]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.2	+/-20	+/-1	+/-0.2	+/-20
				+/-3 %	+/-10 %	+/-10 %	
	8:05:19	65.35	6.93	1483.81	52.41	0.04	-219.96
	8:08:02	65.34	6.92	1484.47	282.67	0.06	-208.71
Last 5 Readings	8:10:46	65.55	6.92	1492.80	505.35	0.06	-200.37
	8:13:29	65.88	6.91	1475.25	627.94	0.06	-194.68
	8:16:13	65.80	6.90	1485.50	7.38	0.01	-190.88
	8:10:46	0.21	0.00	8.33	222.68	0.00	8.34
Variance in last 3 readings	8:13:29	0.34	-0.01	-17.55	122.60	0.00	5.69
	8:16:13	-0.08	-0.01	10.25	-620.57	-0.05	3.81

Project Information:		Pump Information:	
Operator Name	N MCNURLEN	Pump Model/Type	SS MONSOON
Company Name	URS	Tubing Type	LDPE
Project Name	SOLUTIA	Tubing Diameter	0.19 [in]
Site Name	3Q11 GW	Tubing Length	118.35 [ft]
		Pump placement from TOC	112.35 [ft]

Well Information: Well Id BSA-MW-3D Well diameter 2 [in] Well total depth 114.8 [ft] Depth to top of screen 108.85 [ft] Screen length 60 [in] Depth to Water 14.4 [ft]

Pumping information: Final pumping rate 500 [mL/min] Flowcell volume 1259.85 [mL] Calculated Sample Rate 152 [sec] Sample rate 152 [sec]

Stabilized drawdown

Low-Flow Sampling Stabilization Summary

	Time	Temp [F]	pH [pH]	Cond [µS/cm @25C]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.2	+/-20	+/-1	+/-0.2	+/-20
				+/-3 %	+/-10 %	+/-10 %	
	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00
	13:41:35	65.41	7.01	1551.95	5.35	0.25	-138.61
Last 5 Readings	13:44:12	64.17	7.02	1561.89	2.29	0.14	-138.87
	13:46:49	63.66	7.02	1566.56	1.51	0.09	-138.65
	13:49:27	63.58	7.02	1570.50	3.22	0.07	-138.00
	13:44:12	-1.24	0.01	9.95	-3.05	-0.11	-0.25
Variance in last 3 readings	13:46:49	-0.51	0.00	4.67	-0.78	-0.06	0.22
	13:49:27	-0.08	0.00	3.94	1.70	-0.02	0.65

Calculated Sample Rate

Stabilized drawdown

Sample rate

196 [sec]

196 [sec]

Project Information:		Pump Information:		
Operator Name	N MCNURLEN	Pump Model/Type	SS MONSOON	
Company Name	URS	Tubing Type	LDPE	
Project Name	SOLUTIA	Tubing Diameter	0.19 [in]	
Site Name	3Q11 GW	Tubing Length		
-		Pump placement from TOC	120.73 [ft]	
Well Information:		Pumping information:		
Well Id	BSA-MW-4D	Final pumping rate	400 [mL/min]	
Well diameter	2 [in]	Flowcell volume	1306.58 [mL]	

123.18 [ft]

118.23 [ft]

23.92 [ft]

60 [in]

Low-Flow Sampling Stabilization Summary

	Time	Temp [F]	pH [pH]	Cond [µS/cm @25C]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.2	+/-20	+/-1	+/-0.2	+/-20
				+/-3 %	+/-10 %	+/-10 %	
	8:30:22	65.14	7.01	1664.13	2.56	0.41	-176.78
	8:33:45	63.88	6.99	1657.06	5.29	0.15	-181.57
Last 5 Readings	8:37:08	63.63	6.98	1656.36	15.22	0.10	-182.97
	8:40:32	63.52	6.97	1657.47	4.56	0.03	-180.40
	8:43:55	63.61	6.96	1656.01	13.00	0.03	-179.12
	8:37:08	-0.25	-0.01	-0.70	9.93	-0.05	-1.41
Variance in last 3 readings	8:40:32	-0.11	-0.01	1.11	-10.66	-0.06	2.57
	8:43:55	0.09	-0.01	-1.46	8.44	0.00	1.29

Notes:

Well total depth

Screen length

Depth to Water

Depth to top of screen

Project Information:		Pump Information:	
Operator Name	N MCNURLEN	Pump Model/Type	SS MONSOON
Company Name	URS	Tubing Type	LDPE
Project Name	SOLUTIA	Tubing Diameter	0.19 [in]
Site Name	3Q11 GW	Tubing Length	124.04 [ft]
		Pump placement from TOC	115 [ft]

Well Information: **Pumping information:** Well Id BSA-MW-5D Final pumping rate 400 [mL/min] Well diameter 2 [in] Flowcell volume 1291.58 [mL] Well total depth 120.95 [ft] Calculated Sample Rate 194 [sec] Depth to top of screen 115.54 [ft] Sample rate 194 [sec] Stabilized drawdown Screen length 60 [in] Depth to Water 19.15 [ft]

Low-Flow Sampling Stabilization Summary

	Time	Temp [F]	pH [pH]	Cond [µS/cm @25C]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.2	+/-20	+/-1	+/-0.2	+/-20
				+/-3 %	+/-10 %	+/-10 %	
	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00
	11:52:02	69.84	6.97	2554.41	14.76	0.20	-122.25
Last 5 Readings	11:55:22	68.45	6.97	2545.24	14.57	0.11	-121.64
	11:58:49	67.54	6.97	2537.63	31.16	0.05	-121.29
	12:02:10	67.10	6.96	2535.38	78.26	0.02	-120.56
	11:55:22	-1.39	0.00	-9.17	-0.20	-0.09	0.60
Variance in last 3 readings	11:58:49	-0.90	-0.01	-7.61	16.59	-0.06	0.35
	12:02:10	-0.44	-0.01	-2.25	47.10	-0.03	0.73

300 [mL/min]

1008.79 [mL]

202 [sec]

202 [sec]

Project Information:		Pump Information:	
Operator Name	N MCNURLEN	Pump Model/Type	SS MONSOON
Company Name	URS	Tubing Type	LDPE
Project Name	SOLUTIA	Tubing Diameter	0.19 [in]
Site Name	3Q11 GW	Tubing Length	73.32 [ft]
		Pump placement from TOC	67.32 [ft]

Well Information: **Pumping information:** Well Id CPA-MW-1D Final pumping rate Well diameter 2 [in] Flowcell volume Well total depth 70.73 [ft] Calculated Sample Rate Depth to top of screen 65.82 [ft] Sample rate Stabilized drawdown Screen length 60 [in] Depth to Water 6.31 [ft]

Low-Flow Sampling Stabilization Summary

	Time	Temp [F]	pH [pH]	Cond [µS/cm @25C]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.2	+/-20	+/-1	+/-0.2	+/-20
				+/-3 %	+/-10 %	+/-10 %	
	14:17:38	66.78	9.49	2226.34	11.29	0.01	-73.28
	14:21:08	66.56	9.46	2164.30	8.68	-0.01	-86.66
Last 5 Readings	14:24:36	65.86	9.43	2185.80	11.16	0.00	-102.49
	14:28:06	65.86	9.40	2191.70	7.33	-0.01	-114.42
	14:31:35	65.53	9.36	2187.63	6.23	0.00	-122.07
	14:24:36	-0.70	-0.04	21.50	2.48	0.00	-15.82
Variance in last 3 readings	14:28:06	0.00	-0.03	5.91	-3.84	-0.01	-11.93
	14:31:35	-0.32	-0.03	-4.08	-1.10	0.01	-7.65

Project Information:		Pump Information:	
Operator Name	N MCNURLEN	Pump Model/Type	SS MONSOON
Company Name	URS	Tubing Type	LDPE
Project Name	SOLUTIA	Tubing Diameter	0.19 [in]
Site Name	3Q11 GW	Tubing Length	108.15 [ft]
		Pump placement from TOC	102.15 [ft]

Well Information: **Pumping information:** Well Id CPA-MW-2D Final pumping rate 400 [mL/min] Well diameter 2 [in] Flowcell volume 1202.98 [mL] Well total depth 104.65 [ft] Calculated Sample Rate 181 [sec] Depth to top of screen 99.65 [ft] Sample rate 181 [sec] Stabilized drawdown Screen length 60 [in] 0.05 [ft] Depth to Water 6.21 [ft]

Low-Flow Sampling Stabilization Summary

	Time	Temp [F]	pH [pH]	Cond [µS/cm @25C]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.2	+/-20	+/-1	+/-0.2	+/-20
				+/-3 %	+/-10 %	+/-10 %	
	12:39:57	69.22	7.00	1317.68	20.27	0.11	-137.99
	12:43:04	69.03	6.99	1321.33	56.43	0.09	-136.10
Last 5 Readings	12:46:13	68.79	6.99	1287.78	11.96	0.06	-133.32
	12:49:20	68.94	6.98	1279.81	15.39	0.05	-131.82
	12:52:27	68.89	6.98	1275.57	37.48	0.05	-131.99
	12:46:13	-0.24	0.00	-33.55	-44.46	-0.03	2.78
Variance in last 3 readings	12:49:20	0.15	0.00	-7.97	3.43	0.00	1.50
	12:52:27	-0.05	0.00	-4.24	22.09	0.00	-0.17

Project Information:		Pump Information:	
Operator Name	N MCNURLEN	Pump Model/Type	SS MONSOON
Company Name	URS	Tubing Type	LDPE
Project Name	SOLUTIA	Tubing Diameter	0.19 [in]
Site Name	3Q11 GW	Tubing Length	116.5 [ft]
		Pump placement from TOC	110.5 [ft]

Well Information:		Pumping information:	
Well Id	CPA-MW-3D	Final pumping rate	400 [mL/min]
Well diameter	2 [in]	Flowcell volume	1249.54 [mL]
Well total depth	112.84 [ft]	Calculated Sample Rate	188 [sec]
Depth to top of screen	108 [ft]	Sample rate	188 [sec]
Screen length	60 [in]	Stabilized drawdown	
Depth to Water	8.65 [ft]		_

Low-Flow Sampling Stabilization Summary

	Time	Temp [F]	pH [pH]	Cond [µS/cm @25C]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.2	+/-20	+/-1	+/-0.2	+/-20
				+/-3 %	+/-10 %	+/-10 %	
	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00
	9:34:28	67.22	7.02	1405.81	28.17	0.12	-205.06
Last 5 Readings	9:37:42	66.03	7.01	1414.15	29.25	0.07	-192.26
	9:40:57	65.74	7.00	1422.18	32.00	0.05	-187.08
	9:44:13	65.71	6.99	1427.33	42.65	0.04	-185.11
	9:37:42	-1.18	0.00	8.34	1.08	-0.05	12.79
Variance in last 3 readings	9:40:57	-0.29	-0.01	8.03	2.75	-0.02	5.18
	9:44:13	-0.03	-0.01	5.14	10.65	-0.01	1.97

Project Information:		Pump Information:	
Operator Name	N MCNURLEN	Pump Model/Type	SS MONSOON
Company Name	URS	Tubing Type	LDPE
Project Name	SOLUTIA	Tubing Diameter	0.19 [in]
Site Name	3Q11 GW	Tubing Length	124.57 [ft]
		Pump placement from TOC	118.57 [ft]

Well Information: **Pumping information:** Well Id CPA-MW-4D Final pumping rate 400 [mL/min] Well diameter 2 [in] Flowcell volume 1294.53 [mL] Well total depth 121 [ft] Calculated Sample Rate 195 [sec] Depth to top of screen 116.07 [ft] Sample rate 195 [sec] Stabilized drawdown Screen length 60 [in] Depth to Water 20.15 [ft]

Low-Flow Sampling Stabilization Summary

	Time	Temp [F]	pH [pH]	Cond [µS/cm @25C]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.2	+/-20	+/-1	+/-0.2	+/-20
				+/-3 %	+/-10 %	+/-10 %	
	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00
	9:49:47	66.87	6.99	2219.81	62.33	0.21	-135.10
Last 5 Readings	9:53:08	65.92	7.00	2267.60	115.39	0.07	-136.08
	9:56:30	65.39	6.99	2255.43	311.14	0.02	-136.12
	9:59:52	65.30	6.99	2250.52	655.89	0.00	-136.54
	9:53:08	-0.95	0.01	47.79	53.06	-0.14	-0.98
Variance in last 3 readings	9:56:30	-0.53	0.00	-12.17	195.75	-0.05	-0.04
	9:59:52	-0.09	0.00	-4.91	344.75	-0.03	-0.42

Operator Name N MCNURLEN Company Name **URS Project Name SOLUTIA** Site Name 3Q11 GW

Pump Information: Pump Model/Type SS MONSOON **Tubing Type LDPE** Tubing Diameter 0.19 [in] **Tubing Length** 118.25 [ft] Pump placement from TOC 112.25 [ft]

Well Information: Well Id CPA-MW-5D Well diameter 2 [in] Well total depth 114.67 [ft] Depth to top of screen 109.75 [ft] Screen length 60 [in] Depth to Water 14.4 [ft] Pumping information: Final pumping rate 500 [mL/min] Flowcell volume 1259.3 [mL] Calculated Sample Rate 152 [sec] Sample rate 152 [sec] Stabilized drawdown 0.05 [ft]

Low-Flow Sampling Stabilization Summary

	Time	Temp [F]	pH [pH]	Cond [µS/cm @25C]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.2	+/-20	+/-1	+/-0.2	+/-20
				+/-3 %	+/-10 %	+/-10 %	
	11:53:10	61.21	6.53	3743.74	20.18	0.67	-117.27
	11:55:47	61.29	6.52	3730.22	17.56	0.46	-114.14
Last 5 Readings	11:58:24	61.15	6.51	3738.51	16.42	0.38	-111.19
	12:01:01	61.35	6.49	3723.19	22.52	0.36	-109.00
	12:03:39	61.14	6.49	3734.82	33.15	0.24	-107.29
	11:58:24	-0.14	-0.02	8.29	-1.13	-0.08	2.96
Variance in last 3 readings	12:01:01	0.19	-0.01	-15.32	6.09	-0.02	2.19
	12:03:39	-0.20	-0.01	11.63	10.64	-0.12	1.71

Appendix B

Chains-of-Custody

Savannah

5102 LaRoche Avenue

Chain of Custody Record

TestAmerica

Savannah, GA 31404																	**************************************					l'estAmerica Labo	ratories, Inc.
phone 912.354.7858 fax 912.352.0165 Client Contact	Project Manager: Dave Palmer					Site Contact: Nathan McNurlen Date: 🙎//								41	COC No:								
URS Corporation						200							Carrier:								of COCs		
1001 Highlands Plaza Drive West, Suite 300	Analysis Turnaround Time					12.6					T						Auven.				ŀ	lob No.	
St. Louis, MO 63110	Calendar	(C) or Wo	rk Days (W)			第				4.							-					2156268	12.00001
(314) 429-0100 Phone	TA	T if different fi	rom Below		-		1			by 375.4	1										ļ		
(314) 429-0462 FAX		2	weeks							te b			6010B								ľ	SDG No.	
Project Name: 3Q11 LTM GW Sampling		1	week					6010B		Sulfs	2		, 60 60								l		
Site: Solutia WG Krummrich Facility		2	2 days			3	Įģ	8	0.0	325.2/	<u>و</u>	,	å e	1		1					1		:
PO#		1	day	,		Ē	by 8260	2	by 3	ξ Δ	y S	15.1	Fe/	115.1							ŀ		
Sample Identification	Sample Date	Sample Time	Sample Type	Matrix	# of Cont.	Filtered S	VOCs by 8260 SVOCs by 8270C	Total Fe/Mn by	Alk/CO2 by 310.	Chloride by	Methane by RSK 175	TOC by 415.1	Dissolved Fe/Mn by	DOC by 415.1								Sample Spe	eific Notes:
BSA-MW -15 -0811	2/15/11	1640	G	Water	14		3 2	1	<u> 1</u>	1	3	2 1	_				4	1	_		_	*SVOCs per semi-ar	nual list
BSA-MW -15 - F(0.2)-0811	8/15/11	1040	6	W	2	x					_		1	1		\perp	1	\downarrow		\sqcup			
cl4-mw-20-0811	8/15/11	1355	6	W	14		3 2	1	1	1	3	ا ح						_	1	\sqcup			· · · · · · · · · · · · · · · · · · ·
CPA-MW-20-F(0,2)-0811	8/15/11	1355	6	W	ک	X							L					_					
CPA-MW-20-0811-AD	8/15/11	_	4	W	5	П	3 z																
CPA-MW-17-0811	8/15/1	1537	6	W	14	П	3 2		1	1	3	ا ح	4					_					
CPA-MW-10-F(0,2)-0811	8/15/11	, , , , , , , , , , , , , , , , , , , ,	/_	W	خ	X							1	1	_								
TB-1	8/15/11			W	2		ર							_					_	1-1			
	7.7					44	-	+-	╫	+	十	十	╈	+-	╫	┝┼	-		_	+-			
		1	Z		1	力	7/	1	1	TT	1		1	1				Т					
	+-//			11		##	We	***	士	╂╼╂	┰	╅	╁	+	╫	-	-	+	+-	T	┢┈		
	//	ÔŨ				ゴ		+	=	\boxminus	#		_		$oldsymbol{\perp}$				+	-			
					├	╂╂	-	+	_	T		工		士					王	Е			
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=Na	OH: 6= Othe	r					2 1	4	1	1	1	3,1	2 4										
Possible Hazard Identification												e ma						les	are I	retair I	red	longer than 1 moi	
Non-Hazard Flammable Skin Irritant	Poison		Unknown					Ret	um 1	To Cli	ent			Dist	osal	By L	de		٠/	4rchi	ve F	orMo	nths
Special Instructions/QC Requirements & Comments: Level 4 D	ata Packag	e																					
TE	EMP 0	.8°C,	0.49	C									-								(d	30-7140	<u> 17</u>
Relinquished by: Asha Mallen	Company:	URS		Date/T	-//i		Recei	ved t)y:\(\(\)	he	2)	مر لا	Ž,	Į			pany	_				Date/Time:	1745
Relinquished by	Company:	4		8/10	11111	80	neces,	+ou l	. j.														
Relinquished by:	Company:			Bate/1	ime:		Recei	•		ОЛ	2	מע	L	les	1		pany					Date/Time: 08/16/11	09:25
						3		L. History		4.2.	-	<u> </u>	1/	7		***************************************	•					//	

US EPA ARCHIVE DOCUMENT

Savannah

5102 LaRoche Avenue

Chain of Custody Record

Savannah, GA 31404																						TestAmerica Laboratories, Inc.
phone 912.354.7858 fax 912.352.0165	Project Ma	nager: Dav	e Palmer			Site	Cont	act: l	Nath	an N	1cNu	rlen	··········	Ď	ate:	81	161	///				COC No:
Client Contact URS Corporation					ntact: Lidya Gulizia Carrier:									ofCOCs								
1001 Highlands Plaza Drive West, Suite 300			urnaround'	Time		3		Т	Τ		П	T	Т		T			П		Т		Job No.
St. Louis, MO 63110	Calendar	r(C)orWo	ork Days (W)	<u> </u>		***				375.4					l							21562682.00001
(314) 429-0100 Phone		AT if different f	rom Below							by 37		1										SDG No.
(314) 429-0462 FAX		. 2	weeks							ate				90109								SUG NO.
Project Name: 3Q11 LTM GW Sampling		I	week				١.	. 8		Sul.	173			à						l		
Site: Solutia WG Krummrich Facility			2 days				_ }	9 8	9.	325.2/Sulfate	SK SK	3.2		W.	_			C Adjusting to				-
PO# 7, <62682			I day			Sample	826	Z Z	Ę	. E	à	y 35	£	. Fe	415.			1	1	1		
Sample Identification	Sample Date	Sample Time	Sample Type	Matrix	# of Cont.	Filtered	VOCs by 8260	Total Fe/Mn by 6010B	Alk/C02 by 318.1	Chloride by	Methane by RSK	Nitrate by 353.2	TOC by 415.1	Dissolved Fe/Mn	DOC by 415.1							Sample Specific Notes:
BSA-MW-20-0811	8/16/11	७१२०	G	Water	14		3	2 1	1	1	3	2	1	4	4	_			_		1	*SVOCs per semi-annual list
BSA-MW-20-F(0.2)0811	8/16/11	0920	4	W	2	X		_	\bot	_		$\vdash \downarrow$	4	1	1	-	$\vdash \vdash$	\dashv			-	
CPA-MW-30-0811	8/16/11	1050	G	$ \omega $	14	\coprod	33	Щ	4	4	3	3	4	_	\bot				+		+	
CPA-MW-30-F(0.2)-0811	8/16/11	1050	6	W	2	X			\bot	-			_	4	4	+			_	+	+	
CPA-MW-50-0811	8/16/11	1305	6	I W	14		3	<u>ا ۲</u>	41	1	3	2	4		+		-		\dashv	+	+	-
CPA-MW-50-F(0.2) -0811	8/16/11	1305	6	W	2	X		_	4	+	-	\vdash	\dashv	4	4		-		-		╁	
CPA-MW-50-0811-MS	8/16/11	1305	4	W	5	\bot	-	2	+	_	-		\dashv		\dashv	-	-		-		╁	
CPA-MW-5D-0811-MSD	x/16/11		<i>b</i> _	W.	15	$oldsymbol{\perp}$	1	4	+	+	╁		-	\dashv	+	+	-		\vdash	-	╫	
BSA-MW-30-0811	<u> 8/16/11</u>	1455	<u> b </u>	W_	14	Ļ	3	٤	Ш	4	3	2	4	_	+		-		\vdash	+	╁	
BSA-MW-30-F(0,2)-0811	8/14/11	1455	6	W.	12	_ Δ	 	_	_	+-	+-	\vdash	-	-4	4	-	+-	-	\vdash	_	╁	
BS4-MW-30-0811-EB	8/16/1	1/605	6	1W	5	1	3	4	+	+	_	-	_		\dashv		╀		\vdash	-	+	
TB-2	8/16/1	1000	<u> </u>	W	2			_		_	╄	\sqcup	_	_	_		╀	Ш	┡	_	+	
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=N	aOH; 6= Oth	er					2	11	4 📗	1 1	1	3,1	2	4	2		,	<u> </u>		o rota	inac	l longer than 1 month)
Possible Hazard Identification	Poison		Unknown					iple i D _{Rei}								sal By				Arci	hive :	For Months
Non-Hazard Flammable Skin Irritant Special Instructions/QC Requirements & Comments: Level 4 I																						
TEMP 3.8			, 1.0	oc.													6	80	· *	714	14	
Relinquished by:	Company	URS		Date/T			10	eived i	ل.	he	Q			9			ompai	I	4_			Date/Time: 8/16/11 1705
Relinquished by:	Company			Date/T	ime:	72i		eived	by:							C	ompa	ny:				Date/Time:
Relinquished by:	Company	<i>(</i>)		Date/1	ا (اط ime:	يەر -	Reco	ejved WE	by:			1		//	·	/ C	ompa					Date/Time: 09:11
						**	17	w	nc	22) <i>4</i>	Эω		10	ra		_/	7/	≥_			Joje 1/18 ONT
													16	/				į				r

DOCUMENT **ARCHIVE** ш

Savannah

5102 LaRoche Avenue

Chain of Custody Record

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

Savannah, GA 31404 TestAmerica Laboratories, Inc. phone 912.354.7858 fax 912.352.0165 Date: COC No: Site Contact: Nathan McNurlen Client Contact Project Manager: Dave Palmer COCs Lab Contact: Lidva Gulizia Carrier: Tel/Fax: (314) 743-4154 **URS** Corporation Job No. Analysis Turnaround Time 1001 Highlands Plaza Drive West, Suite 300 Calendar (C) or Work Days (W) St. Louis, MO 63110 21562682.00001 (314) 429-0100 Phone TAT if different from Below Chloride by 325.2/Sulfate by SDG No. \Box (314) 429-0462 FAX 2 weeks Project Name: 3Q11 LTM GW Sampling 1 week Site: Solutia WG Krummrich Facility 2 days 21567682 1 day Sample Sample Sample Sample Specific Notes: Date Time Type Matrix Cont. Sample Identification 3 1 Water 14 BSA-MW-40-0811 *SVOCs per semi-annual list וורווה 0950 W 1105 W Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Possible Hazard Identification Return To Client Disposal By Lab Archive For Skin Irritant Unknown Flammable Poison B Special Instructions/QC Requirements & Comments: Level 4 Data Package 2,0/3,0°C Company: Company: Relinguished by: 14 URS Company: Сотрапу: 77 Company: Relinguished by: 3/3/11 0937 74 SW

Appendix C Quality Assurance Report

Solutia Inc. W.G. Krummrich Facility Sauget, Illinois

Long-Term Monitoring Program 3rd Quarter 2011 Data Report

Prepared for

Solutia Inc. 575 Maryville Centre Drive St. Louis, MO 63141

November 2011

URS Corporation 1001 Highland Plaza Drive West, Suite 300 St. Louis, MO 63110 (314) 429-0100

Project # 21562682.00002

1.0	INTRODUCTION	1
2.0	RECEIPT CONDITION AND SAMPLE HOLDING TIMES	4
3.0	TRIP BLANKS, LABORATORY METHOD BLANK AND EQUIPMENT BLANK SAMPLES	3.5
4.0	SURROGATE SPIKE RECOVERIES	6
5.0	LABORATORY CONTROL SAMPLE RECOVERIES	6
6.0	MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) SAMPLES	6
7.0	FIELD DUPLICATE RESULTS	7
8.0	INTERNAL STANDARD RESPONSES	7
9.0	RESULTS REPORTED FROM DILUTIONS	7

1.0 INTRODUCTION

This Quality Assurance Report presents the findings of a review of analytical data for groundwater samples and surface water/sediment samples collected in August of 2011 at the Solutia W.G. Krummrich plant and Mississippi River as part of the 3rd Quarter 2011 Long-Term Monitoring Program. The samples were collected by URS Corporation personnel and analyzed by TestAmerica Laboratories located in Savannah, Georgia using USEPA methods, Standard methods and USEPA SW-846 methodologies. Groundwater samples were tested for volatile organic compounds (VOCs), semivolatile compounds (SVOCs), metals, dissolved gasses, and general chemistry.

One hundred percent of the data were subjected to a data quality review (Level III validation); ten percent of these data were subjected to a full data validation (Level IV validation). Please see **Appendix D** for groundwater validation reports (Full Validation of VOC Data – SDG KPS065, Full Validation of SVOC Data – SDG KPS065, Full Validation of Metals Data – SDG KPS065, and Full Validation of Wet Chemistry Data – SDG KPS065). The Level III and IV validations were performed in order to confirm that the analytical data provided by TestAmerica were acceptable in quality for their intended use.

A total of 13 groundwater samples (nine investigative samples, one field duplicate pair, one MS/MSD pair, and one equipment blank) were analyzed by Test America. In addition, three trip blank sets were included in the coolers that contained groundwater samples for VOC analysis and were analyzed for VOCs by USEPA SW-846 Method 8260B. These samples were analyzed as one Sample Delivery Groups (SDG) KPS065 utilizing the following USEPA SW-846 Methods:

- Method 8260B for VOCs (Benzene, Chlorobenzene, 1,2-Dichlorobenzene, 1,3-Dichlorobenzene and 1,4-Dichlorobenzene)
- Method 8270C for SVOCs (1,2,4-Trichlorobenzene, 1,4-Dioxane, 2-Chlorophenol, and 4-Chloroaniline)
- Method 6010B for total and dissolved iron and manganese

Samples were also analyzed for MNA parameters by the following methods:

- Method RSK-175 for Dissolved Gasses (Ethane, Ethylene, and Methane)
- USEPA Method 310.1 for Alkalinity and Free Carbon Dioxide
- USEPA Method 325.2 for Chloride
- USEPA Method 353.2 for Nitrogen, Nitrate
- USEPA Method 375.4 for Sulfate

USEPA Method 415.1 for Total and Dissolved Organic Carbon

Samples were reviewed following procedures outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, 2008, USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004 and the Revised Long-Term Monitoring Program (LTMP) Work Plan (Solutia 2009).

The above guidelines provided the criteria to review the data. Additional quantitative criteria are given in the analytical methods. Qualifiers assigned by the data reviewer have been applied to the laboratory report. The qualifiers indicate data that did not meet acceptance criteria and corrective actions were not successful or not performed. The various qualifiers are explained in **Tables 1** and **2** below:

TABLE 1 Laboratory Data Qualifiers

Lab Qualifier	Definition
U	Analyte was not detected at or above the reporting limit.
*	LCS, LCSD, MS, MSD, MD or surrogate exceeds the control limits.
E	Result exceeded the calibration range, secondary dilution required.
D	Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a dilution will be flagged with a D.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
X	Spike recovery exceeds upper or lower control limits.
F	MS, MSD or RPD exceeds upper or lower control limits.
Р	The difference between the results of the two GC columns is greater than 40%
Н	Sample was prepped or analyzed beyond the specified holding time.
В	Compound was found in the blank and sample.
4	MS, MSD: The analyte present in the original sample is 4 times greater than the matrix spike concentration; therefore, control limits are not applicable.

R

U The analyte was analyzed for but was not detected. The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. The sample results are rejected due to serious deficiencies in the ability to

analyze the sample and meet quality control criteria. The presence or absence

TABLE 2 URS Data Qualifiers

Based on the criteria outlined, it is recommended that the results reported for these analyses are accepted for their intended use. Acceptable levels of accuracy, precision, and representativeness (based on MS/MSD, LCS, surrogate compounds and field duplicate results) were achieved for this data set, except where noted in this report. In addition, analytical completeness, defined as the percentage of analytical results that are judged to be valid, including estimated detect/non-detect (J/UJ) data was 100 percent, which meets the completeness goal of 95 percent.

The data review included evaluation of the following criteria:

Organics

- Receipt condition and sample holding times
- Laboratory method blanks, field equipment blanks and trip blank samples

of the analyte cannot be verified.

- Surrogate spike recoveries
- Laboratory control sample (LCS) recoveries
- Matrix spike/matrix spike duplicate (MS/MSD) sample recoveries and relative percent difference (RPD) values
- Field duplicate results
- Results reported from dilutions
- Internal standard responses

Inorganics/General chemistry

- · Receipt condition and sample holding times
- Laboratory method blank and field equipment blank samples

- LCS recoveries
- MS/MSD sample recoveries and matrix duplicate RPD values
- Field duplicate and laboratory duplicate results
- Results reported from dilutions

The following sections present the results of the data review.

2.0 RECEIPT CONDITION AND SAMPLE HOLDING TIMES

Sample holding time requirements for the analyses performed are presented in the methods and/or in the data review guidelines. Review of the sample collection, extraction and analysis dates involved comparing the chain-of-custody and the laboratory data summary forms for accuracy, consistency, and holding time compliance.

The cooler receipt form indicated that four of seven coolers were received by the laboratory at 0.4°C, 0.8°C, 0.9°C and 1.0°C which are outside the 4°C ± 2°C criteria. The samples were received in good condition; therefore no qualification of data was required. One out of three VOA vials for sample BSA-MW-1S-0811 was received broken. The remaining unbroken vials contained sufficient sample to complete all requested analysis. The cooler receipt form indicated three out of three VOA vials for samples CPA-MW-1D-0811, BSA-MW-2D-0811, and CPA-MW-4D-0811 were received by the laboratory with headspace. For samples such as these, having significant concentrations (as opposed to numerous non-detects), headspace is typically not a major issue. Samples CPA-MW-1D-0811, BSA-MW-2D-0811, and CPA-MW-4D-0811 were qualified using professional judgment to indicate the presence of headspace.

Sample ID	Parameter	Analyte	Qualifiers	Comments
CPA-MW-1D-0811	VOCs	Benzene	J	Professional Judgment
CPA-MW-1D-0811	VOCs	Chlorobenzene	J	Professional Judgment
CPA-MW-1D-0811	VOCs	1,2-Dichlorobenzene	J	Professional Judgment
CPA-MW-1D-0811	VOCs	1,3-Dichlorobenzene	J	Professional Judgment
CPA-MW-1D-0811	VOCs	1,4-Dichlorobenzene	J	Professional Judgment
BSA-MW-2D-0811	VOCs	Benzene	J	Professional Judgment
BSA-MW-2D-0811	VOCs	Chlorobenzene	UJ	Professional Judgment
BSA-MW-2D-0811	VOCs	1,2-Dichlorobenzene	UJ	Professional Judgment

Sample ID	Parameter	Analyte Qualific		Comments
BSA-MW-2D-0811	VOCs	1,3-Dichlorobenzene	UJ	Professional Judgment
BSA-MW-2D-0811	VOCs	1,4-Dichlorobenzene	UJ	Professional Judgment
CPA-MW-4D-0811	VOCs	Benzene	J	Professional Judgment
CPA-MW-4D-0811	VOCs	Chlorobenzene	J	Professional Judgment
CPA-MW-4D-0811	VOCs	1,2-Dichlorobenzene	UJ	Professional Judgment
CPA-MW-4D-0811	VOCs	1,3-Dichlorobenzene	UJ	Professional Judgment
CPA-MW-4D-0811	VOCs	1,4-Dichlorobenzene	UJ	Professional Judgment

Headspace was also reported in two of three VOA vials for sample CPA-MW-3D-0811 and one of three VOA vials for sample CPA-MW-5D-0811. The remaining vials without headspace contained sufficient sample to complete all requested analyses; therefore no qualification of data was required. Sample BSA-MW-5D-F(0.2)-0811 was received at a pH >2 for dissolved metals and dissolved organic carbon; pH was adjusted properly at the laboratory and therefore, no qualification of data was required. Total organic carbon samples were received at a pH >2; pH was adjusted properly at the laboratory and therefore, no qualification of data was required. Additionally, although the cooler receipt form indicated insufficient sample volume was received for MS/MSD analysis, samples CPA-MW-5D-0811 and BSA-MW-1S-0811 contained sufficient sample volume to complete all requested analysis; therefore no qualification of data was required.

The laboratory report was revised on September 21, 2011 in order to correct the dilution factor from 200 to 2000 in the volatiles analysis of sample BSA-MW-2D-0811.

3.0 TRIP BLANKS, LABORATORY METHOD BLANK AND EQUIPMENT BLANK SAMPLES

Trip blank samples are used to assess VOC cross contamination of samples during shipment to the laboratory. Trip blanks were submitted with each cooler shipped containing samples for VOC analyses for a total of three trip blank sample sets. Trip blank samples were non-detect.

Laboratory method blank samples evaluate the existence and magnitude of contamination problems resulting from laboratory activities. All laboratory method blank samples were analyzed at the method prescribed frequencies. Method blank samples were non-detect.

Equipment blank samples are used to assess the effectiveness of equipment decontamination procedures. Equipment blank samples were non-detect with the exception summarized in the following table.

Blank ID	Parameter	Analyte	Concentration	Units
BSA-MW-3D-0811-EB	VOCs	Benzene	1.5	μg/L

Analytical data reported non-detect or at concentrations greater than (5X) the associated blank concentration did not require qualification. No qualification of data was required.

4.0 SURROGATE SPIKE RECOVERIES

Surrogate compounds are used to evaluate overall laboratory performance for sample preparation efficiency on a per sample basis. Samples analyzed for VOCs were spiked with surrogate compounds during sample preparation. USEPA National Functional Guidelines for Superfund Organic Methods Data Review state how data is qualified, if surrogate spike recoveries do not meet acceptance criteria.

Groundwater surrogate recoveries were within evaluation criteria. Surrogates that were associated with quality control samples or were diluted out and not recovered did not require qualification. No qualification of data was required.

5.0 LABORATORY CONTROL SAMPLE RECOVERIES

Groundwater laboratory control samples (LCS) are analyzed with each analytical batch to assess the accuracy of the analytical process. LCS recoveries were within evaluation criteria with the exception summarized in the following table:

LCS ID	Parameter	Analyte	LCS/LCSD Recovery	RPD	LCS/LCSD Criteria
680-212578/4/5	VOCs	1,3-Dichlorobenzene	131/ 128	2	70-130

Analytical data reported as non-detect and associated with LCS recoveries above evaluation criteria, indicating a possible high bias, did not require qualification. The compound 1,3-dichlorobenzene in sample CPA-MW-1D-0811 was qualified due to headspace; therefore, no further qualification of data was required.

6.0 MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) SAMPLES

MS/MSD samples are analyzed to assess the accuracy and precision of the analytical process on an analytical sample in a particular matrix. MS/MSD samples were required to be collected at a frequency of one per 20 investigative samples in accordance with the work plan. URS Corporation submitted one MS/MSD sample set for 10 investigative samples meeting the work plan frequency requirement.

Groundwater samples spiked and analyzed as MS/MSDs and their respective recoveries are discussed further in data reviews in **Appendix D**. No qualification of data was required.

7.0 FIELD DUPLICATE RESULTS

Field duplicate results are used to evaluate precision of the entire data collection activity, including sampling, analysis and site heterogeneity. When results for both duplicate and sample values are greater than five times the practical quantitation limit (PQL), satisfactory precision is indicated by an RPD less than or equal to 25 percent for aqueous samples. Where one or both of the results of a field duplicate pair are reported at less than five times the PQL, satisfactory precision is indicated if the field duplicate results agree within 2 times the quantitation limit. Field duplicate results that do not meet these criteria may indicate unsatisfactory precision of the results.

One pair of field duplicate samples was collected for the nine investigative groundwater samples. This satisfies the requirement in the work plan (one per 10 investigative samples or 10 percent). Groundwater field duplicate RPDs were within evaluation criteria with the exception summarized in the following table below:

Sample ID	Field Duplicate ID	Parameter	Analyte	RPD	Qualification
CPA-MW-2D-0811	CPA-MW-2D-0811-AD	VOCs	1,4-Dichlorobenzene	27	٦/٦

8.0 INTERNAL STANDARD RESPONSES

Internal standard (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during each analytical run. IS areas must be within -50 percent to +100 percent for VOCs.

The internal standards area responses for VOCs and SVOCs were verified for the data review. VOC and SVOC IS responses met the criteria as described above for all groundwater samples. No qualification of data was required.

9.0 RESULTS REPORTED FROM DILUTIONS

VOC, TOC, DOC, chloride, and sulfate results for groundwater samples were diluted when high levels of target analytes were present. The diluted sample results for these analytes were reported for the associated samples.

Appendix D Groundwater Analytical Results (with Data Review/Validation Reports)

3Q 2011 LTM Data Review

Laboratory SDG: KPS065

Data Reviewer: Melissa Mansker Peer Reviewer: Elizabeth Kunkel

Date Reviewed: 9/22/2011

Guidance: USEPA National Functional Guidelines for Superfund Organic

Methods Data Review 2008

Work Plan: Revised Long-Term Monitoring Program (LTMP) Work Plan (Solutia

2009)

Sample Identification						
BSA-MW-1S-0811	BSA-MW-1S-F(0.2)-0811					
CPA-MW-2D-0811	CPA-MW-2D-F(0.2)-0811					
CPA-MW-2D-0811-AD	CPA-MW-1D-0811					
CPA-MW-1D-F(0.2)-0811	TB-1					
BSA-MW-2D-0811	BSA-MW-2D-F(0.2)-0811					
CPA-MW-3D-0811	CPA-MW-3D-F(0.2)-0811					
CPA-MW-5D-0811	CPA-MW-5D-F(0.2)-0811					
BSA-MW-3D-0811	BSA-MW-3D-F(0.2)-0811					
BSA-MW-3D-0811-EB	TB-2					
BSA-MW-4D-0811	BSA-MW-4D-F(0.2)-0811					
CPA-MW-4D-0811	CPA-MW-4D-F(0.2)-0811					
BSA-MW-5D-0811	BSA-MW-5D-F(0.2)-0811`					
TB-3						

1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC as appropriate? Yes

2.0 Laboratory Case Narrative \ Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?

The laboratory case narrative indicated benzene was detected in the equipment blank. Additionally, chloride MS/MSD recoveries in sample BSA-MW-1S-0811 were outside evaluation criteria, and 4-chloroaniline MS/MSD recoveries in sample CPA-MW-5D-0811 were outside evaluation criteria. The VOC LCS recovery was outside of evaluation criteria for the analyte 1,3-dichlorobenzene. Several samples were diluted due to high levels of target analytes. The laboratory report was revised on September 21, 2011 in order to correct the dilution factor from 200 to 2000 in the volatiles analysis of sample BSA-MW-2D-0811. These issues are addressed further in the appropriate sections below.

The cooler receipt form indicated that four out of seven coolers were received by the

laboratory at 0.4°C, 0.8°C, 0.9°C and 1.0°C which is outside the 4°C ± 2°C criteria. The samples were received in good condition; therefore no qualification of data was required.

One out of three VOA vials for sample BSA-MW-1S-0811 was received broken. The remaining unbroken vials contained sufficient sample to complete all requested analysis. Three out of three VOA vials for samples CPA-MW-1D-0811, BSA-MW-2D-0811, and CPA-MW-4D-0811 were received by the laboratory with headspace. These samples were qualified using professional judgment. Headspace was also reported in two of three VOA vials for sample CPA-MW-3D-0811 and one of three VOA vials for sample CPA-MW-5D-0811. The remaining vials without headspace contained sufficient sample to complete all requested analyses; therefore no qualification of data was required. Sample BSA-MW-5D-F(0.2)-0811 was received at a pH >2 for dissolved metals and dissolved organic carbon; pH was adjusted properly at the laboratory and therefore, no qualification of data was required. Total organic carbon samples were received at a pH >2; pH was adjusted properly at the laboratory and therefore, no qualification of data was required. Additionally, although the cooler receipt form notes insufficient sample volume was received for MS/MSD analysis, samples CPA-MW-5D-0811 and BSA-MW-1S-0811 contained sufficient sample volume to complete requested analysis.

3.0 Holding Times

Were samples extracted/analyzed within applicable limits?

Yes

4.0 Blank Contamination

Were any analytes detected in the Method Blanks, Field Blanks or Trip Blanks?

Yes

Blank ID	Parameter	Analyte	Concentration	Units
BSA-MW-3D-0811-EB	VOCs	Benzene	1.5	ug/L

Analytical data reported non-detect or at concentrations greater than five times (5X) the associated blank concentration did not require qualification. No qualification of data was required.

5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?

No

LCS ID	Parameter	Analyte	LCS/LCSD Recovery	RPD	LCS/LCSD Criteria
680-212578/4/5	VOCs	1,3-Dichlorobenzene	131/ 128	2	70-130

Analytical data reported as non-detect and associated with LCS recoveries above evaluation criteria, indicating a possible high bias, did not require qualification. The compound 1,3-dichlorobenzene in sample CPA-MW-1D-0811 was qualified due to headspace; therefore, no further qualification of data was required.

6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?

Yes

7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples collected as part of this SDG?

Yes, sample CPA-MW-5D-0811 was spiked and analyzed for VOCs and SVOCs. Sample BSA-MW-1S-0811 was spiked and analyzed for total and dissolved metals, chloride, nitrate, sulfate and total organic carbon.

Were MS/MSD recoveries within evaluation criteria?

No

MS/MSD ID	Parameter	Analyte	MS/MSD Recovery (%)	RPD	MS/MSD/ RPD Criteria
CPA-MW-5D-0811	SVOCs	4-Chloroaniline	20/24	15	70-130/30
BSA-MW-1S-0811	Chloride	Chloride	77/74	0	85-115/30

USEPA National Functional Guidelines for Organic Data Review indicates that organic data does not require qualification based on MS/MSD data alone. LCS/LCSD recoveries were within evaluation criteria for 4-Chloroaniline; therefore, no qualification of data was required. Chloride MS/MSD recoveries in sample BSA-MW-1S-0811 could not be evaluated because the sample concentrations were greater than four times (4X) the matrix spike concentration. No qualification of data was required.

8.0 Internal Standard (IS) Recoveries

Were internal standard area recoveries within evaluation criteria?

Yes

9.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?

Yes, sample CPA-MW-5D-0811 was duplicated and analyzed for alkalinity and free carbon dioxide. Sample CPA-MW-2D-0811 was duplicated and analyzed for chloride. Sample BSA-MW-1S-0811 was duplicated and analyzed for sulfate. Sample BSA-MW-2D-F(0.2)-0811 was duplicated and analyzed for dissolved organic carbon.

Were laboratory duplicate sample RPDs within criteria?

Yes

10.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?

Yes

Sample ID	Field Duplicate ID
CPA-MW-2D-0811	CPA-MW-2D-0811-AD

Were field duplicates within evaluation criteria?

No

Sample ID	Field Duplicate ID	Parameter	Analyte	RPD	Qualification
CPA-MW-2D-0811	CPA-MW-2D-0811-AD	VOCs	1,4-Dichlorobenzene	27	J/J

10.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported? Not applicable; analytes were detected in samples that were diluted.

11.0 Additional Qualifications

Were additional qualifications applied?

Yes, the laboratory case narrative indicated that three out of three VOA vials for samples CPA-MW-1D-0811, BSA-MW-2D-0811, and CPA-MW-4D-0811 were received by the laboratory with headspace. These samples were qualified using professional judgment. 1,3-Dichlorobenzene in sample CPA-MW-1D-0811 was previously qualified due to high LCS recovery and therefore requires no further qualification.

Sample ID	Parameter	Analyte	Qualifiers	Comments
CPA-MW-1D-0811	VOCs	Benzene	J	Professional Judgment
CPA-MW-1D-0811	VOCs	Chlorobenzene	J	Professional Judgment
CPA-MW-1D-0811	VOCs	1,2-Dichlorobenzene	J	Professional Judgment
CPA-MW-1D-0811	VOCs	1,3-Dichlorobenzene	J	Professional Judgment
CPA-MW-1D-0811	VOCs	1,4-Dichlorobenzene	J	Professional Judgment
BSA-MW-2D-0811	VOCs	Benzene	J	Professional Judgment
BSA-MW-2D-0811	VOCs	Chlorobenzene	UJ	Professional Judgment
BSA-MW-2D-0811	VOCs	1,2-Dichlorobenzene	UJ	Professional Judgment
BSA-MW-2D-0811	VOCs	1,3-Dichlorobenzene	UJ	Professional Judgment
BSA-MW-2D-0811	VOCs	1,4-Dichlorobenzene	UJ	Professional Judgment
CPA-MW-4D-0811	VOCs	Benzene	J	Professional Judgment
CPA-MW-4D-0811	VOCs	Chlorobenzene	J	Professional Judgment
CPA-MW-4D-0811	VOCs	1,2-Dichlorobenzene	UJ	Professional Judgment
CPA-MW-4D-0811	VOCs	1,3-Dichlorobenzene	UJ	Professional Judgment
CPA-MW-4D-0811	VOCs	1,4-Dichlorobenzene	UJ	Professional Judgment

FULL VALIDATION OF VOC DATA - SDG KPS065

This section describes the full validation for five water samples which were prepared by USEPA SW-846 Method 5030B and analyzed for volatile organic compounds (VOCs) by USEPA SW-846 Method 8260B. Samples were analyzed by Test America Laboratory of Savanna, Georgia, and submitted as part of sample delivery group (SDG) KPS065. Samples included as part of this validation are listed below:

Sample Identification				
CPA-MW-1D-0811	BSA-MW-2D-0811			
CPA-MW-5D-0811	BSA-MW-3D-0811-EB			
CPA-MW-4D-0811				

Criteria were identified in the Revised Long-Term Monitoring Program (LTMP) Work Plan (Solutia 2009) and USEPA SW-846 Method 8260B. Evaluation of the analytical data followed procedures outlined in the USEPA Contract Program National Functional Guidelines for Superfund Organic Methods Data Review (USEPA 2008) where applicable to SW-846 Method 8260B.

Criteria evaluated included the following method performance criteria:

- Data package completeness
- Laboratory case narrative/cooler receipt form
- Holding times and sample preservation
- GC/MS instrument performance
- Initial calibration
- Calibration verification
- Blank samples
- Surrogate spike recoveries
- Matrix spike/matrix spike duplicate (MS/MSD) samples
- Internal standards
- Laboratory control sample (LCS)
- Target compound identification and quantitation
- Overall data assessment

1.1 Data Package Completeness

The data package was reviewed to make certain that it contained the data contractually required in the deliverable. This included checking the data package for the results of each analyte requested for each field sample submitted in the analytical batch, along with requested QC documentation for the respective methods. The data report was revised on September 21, 2011 in order to correct the dilution factor from 200 to 2000 in the volatiles analysis of sample BSA-MW-2D-0811.

1.2 Laboratory Case Narrative/Cooler Receipt Form

The laboratory case narrative indicated benzene was detected in the equipment blank. Three out of three VOA vials for samples CPA-MW-1D-0811, BSA-MW-2D-0811, and CPA-MW-4D-

0811 were received by the laboratory with headspace. These samples were qualified using professional judgment. Headspace was also reported in two of three VOA vials for sample CPA-MW-3D-0811 and one of three VOA vials for sample CPA-MW-5D-0811. The remaining vials without headspace contained sufficient sample to complete all requested analyses; therefore no qualification of data was required. The VOC LCS recovery was outside of evaluation criteria for the analyte 1,3-Dichlorobenzene. Several samples were diluted due to high levels of target analytes. These issues are addressed further in the appropriate sections below.

1.3 Holding Times and Sample Preservation

Review of the sample collection and analysis dates involved comparing the chains-of-custody, the summary forms, the raw data forms, and the chromatograms for accuracy, consistency, and holding time compliance. The cooler receipt form indicated that four out of seven coolers were received by the laboratory at 0.4° C, 0.8° C, 0.9° C and 1.0° C which is outside the 4° C \pm 2° C criteria, and at a pH <2 and were analyzed within the 14 day holding time criteria. No qualification of data was required due to sample preservation or holding time criteria.

1.4 GC/MS Instrument Performance

GC/MS instrument performance checks were performed to ensure mass resolution, identification, and instrument sensitivity. Criteria for evaluation of instrument performance included possible transcription/calculation errors, adherence to instrument tuning frequency requirements, mass assignments, and ion abundance criteria. Instrument performance check samples were evaluated against criteria established in USEPA SW-846 Method 8260B.

Based on the raw data, the ion abundance criteria were within evaluation criteria for all masses, and no qualification of data was required. The raw data forms were checked against the summary forms and no calculation or transcription errors were noted.

1.5 Initial Calibration

An Initial calibration (ICAL) was established to assess whether the instrument was capable of producing acceptable qualitative and quantitative data for volatile analysis. Samples as part of SDG KPS065 were analyzed using instrument MSO5973. The ICAL for instrument MSO5973 was established on 8/01/2011 prior to sample analysis and using at least five concentration standards to establish the initial calibration curve as required by Method 8260B. An average response factor (RF) was determined for each target analyte, the RFs were reviewed and verified greater than 0.10 for chloromethane, 1,1-dichloroethane and bromoform, 0.30 for chlorobenzene and 1,1,2,2-tetrachloroethane and greater than 0.05 for all other target analytes.

Review of the initial calibration summary forms indicated %RSDs were \leq 30% for calibration check compounds (CCCs) [1,1-dichloroethene, toluene, chloroform, ethylbenzene, 1,2-dichloropropane, and vinyl chloride], and \leq 15% for non-CCCs. Percent RSDs were recalculated from the raw data and no errors in calculation were noted; therefore, no qualification of data was required.

1.6 Calibration Verification

Review of the sample chromatograms indicated the calibration verifications (CVs) were performed at the required frequency every 12 hours. Review of continuing calibration summary forms indicated all RFs met the evaluation criteria of greater than 0.10 (chloromethane, 1,1-

dichloroethane and bromoform), 0.30 (chlorobenzene and 1,1,2,2-tetrachloroethane) and greater than 0.05 for all other analytes for each CCAL. In addition, percent differences (%Ds) and percent drift (%Drift) met the evaluation criteria of \leq 20% for CCCs and < 30% for all other target analytes. Recalculations of the RFs and %Ds for two target compounds were completed for each CV, and no errors in calculation were noted.

1.7 Blank Samples

The purpose of the method blank samples is to evaluate the existence and magnitude of contamination problems emanating from laboratory activities. Method blank samples were analyzed with each analytical batch as required by USEPA SW-846 Method 8260B. All target compounds were reported as non-detect in all method blanks analyzed as part of this SDG. Target analytes for all trip blank samples were reported as non-detect. Analytes detected in the equipment blank are included in the table below.

Blank ID	Parameter	Analyte	Concentration	Units
BSA-MW-3D-0811-EB	VOCs	Benzene	1.5	ug/L

Analytical data reported non-detect or at concentrations greater than five times (5X) the associated blank concentration did not require qualification. No qualification of data was required.

The review of chromatograms indicates all peaks present were accounted or the concentrations reported were below the method detection limit. No further qualification of data was required.

1.8 Surrogate Spike Recoveries

Surrogate compounds were used to evaluate the overall laboratory sample preparation efficiency on a per sample basis. All surrogate recoveries were within the method acceptance criteria

A minimum of 10% of the recoveries were recalculated, and the summary forms versus the raw data were verified. No calculation or transcription errors were noted and no qualification of data was required.

1.9 Matrix Spike/Matrix Spike Duplicate (MS/MSD) Samples

MS/MSD samples are analyzed to assess potential matrix effects. Sample CPA-MW-5D-0811 was spiked and analyzed for VOCs. All MS/MSD recoveries were within the method acceptance criteria for the validated samples. A minimum of 10% of the MS/MSD recoveries were recalculated and compared to the raw data; no calculation or transcription errors were noted. No qualification of data was required based on MS/MSD recoveries.

1.10 Internal Standards and Retention Times

Internal standard (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during each analytical run. IS areas must be within -50% to +100%, and the IS retention times must be within 30 seconds of the IS continuing calibration retention time. IS areas and retention times for the validated samples in this SDG were within evaluation criteria. The summary forms versus the raw data were verified and no transcription errors were noted.

1.11 Laboratory Control Sample (LCS)

Laboratory control samples were analyzed with each analytical batch to assess the accuracy of the analytical process. LCS recoveries were within evaluation criteria. LCS recoveries outside of laboratory evaluation criteria are included in the table below.

LCS ID	Parameter	Analyte	LCS/LCSD	RPD	LCS/LCSD
LG3 ID	Farameter	Allalyte	Recovery		Criteria
680-212578/4/5	VOCs	1,3-Dichlorobenzene	131/ 128	2	70-130

Analytical data reported as non-detect and associated with LCS recoveries above evaluation criteria, indicating a possible high bias, did not require qualification. The compound 1,3-dichlorobenzene in sample CPA-MW-1D-0811 was qualified due to headspace; therefore, no further qualification of data was required.

A minimum of 10% of the spiking compound recoveries for the LCS's were recalculated using the LCS summary forms, and no calculation or transcription errors were noted.

1.12 Target Compound Identification and Quantitation

For validation of the compound identification, chromatograms were reviewed to verify the major peaks were identified, the spectra of the identified compounds were verified against the library spectra, and the relative retention time was no greater than 0.06 different from the associated CV retention times. A minimum of 10% of the detected target analytes and spiking compounds were verified. No anomalies were noted with the identification of the target compounds in the samples.

For the validation of compound quantitation, 10% of the target analytes were recalculated from the raw data, and no calculation errors were noted. Additionally, the reporting limits were verified to determine if reporting limits (RLs) were adjusted for dilutions. No qualification of the data was required and review of the data indicated the correct RLs were reported.

1.13 Additional Qualifications

Three out of three VOA vials for samples CPA-MW-1D-0811, BSA-MW-2D-0811, and CPA-MW-4D-0811 were received by the laboratory with headspace. Professional judgment was used to qualify these samples.

Sample ID	Parameter	Analyte	Qualifiers	Comments
CPA-MW-1D-0811	VOCs	Benzene	J	Professional Judgment
CPA-MW-1D-0811	VOCs	Chlorobenzene	J	Professional Judgment
CPA-MW-1D-0811	VOCs	1,2-Dichlorobenzene	J	Professional Judgment
CPA-MW-1D-0811	VOCs	1,3-Dichlorobenzene	J	Professional Judgment
CPA-MW-1D-0811	VOCs	1,4-Dichlorobenzene	J	Professional Judgment
BSA-MW-2D-0811	VOCs	Benzene	J	Professional Judgment
BSA-MW-2D-0811	VOCs	Chlorobenzene	UJ	Professional Judgment
BSA-MW-2D-0811	VOCs	1,2-Dichlorobenzene	UJ	Professional Judgment
BSA-MW-2D-0811	VOCs	1,3-Dichlorobenzene	UJ	Professional Judgment
BSA-MW-2D-0811	VOCs	1,4-Dichlorobenzene	UJ	Professional Judgment

Sample ID	Parameter	Analyte	Qualifiers	Comments
CPA-MW-4D-0811	VOCs	Benzene	J	Professional Judgment
CPA-MW-4D-0811	VOCs	Chlorobenzene	J	Professional Judgment
CPA-MW-4D-0811	VOCs	1,2-Dichlorobenzene	ΠJ	Professional Judgment
CPA-MW-4D-0811	VOCs	1,3-Dichlorobenzene	ΠJ	Professional Judgment
CPA-MW-4D-0811	VOCs	1,4-Dichlorobenzene	UJ	Professional Judgment

1.14 Overall Data Assessment

Based on the criteria outlined, it is recommended that the results reported for these analyses be accepted for their intended use. Acceptable levels of accuracy and precision, based on LCS and surrogate data were achieved for this SDG. In addition, completeness, defined to be the percentage of analytical results which are judged to be valid, including estimated detect/non-detect (**J/UJ**) data, was 100% for this SDG and should be used for their intended purpose.

FULL VALIDATION OF SVOC DATA - SDG KPS065

This section describes the full validation for four water samples which were prepared by USEPA SW-846 Method 3520C and analyzed for semivolatile organic compounds (SVOCs) by USEPA SW-846 Method 8270C. Samples were analyzed by TestAmerica Laboratory of Savanna, Georgia, and submitted as part of sample delivery group (SDG) KPS065. Samples included as part of this validation are listed below:

Sample Identification				
BSA-MW-1S-0811	BSA-MW-2D-0811			
CPA-MW-5D-0811	CPA-MW-4D-0811			

Criteria were identified in the Revised Long-Term Monitoring Program (LTMP) Work Plan (Solutia 2009) and USEPA SW-846 Method 8270C. Evaluation of the analytical data followed procedures outlined in the USEPA Contract Program National Functional Guidelines for Organic Data Review (USEPA 2008) where applicable to SW-846 Method 8270C.

Criteria evaluated included the following method performance criteria:

- Data package completeness
- Laboratory case narrative/cooler receipt form
- Holding times and sample preservation
- Instrument performance
- Initial calibration
- Calibration verification
- Blank samples
- Surrogate spike recoveries
- Matrix spike/matrix spike duplicate (MS/MSD) samples
- Internal standard areas
- Laboratory control sample (LCS)
- Target compound identification and quantitation
- Overall data assessment

1.0 Data Package Completeness

The data package was reviewed to make certain that it contained the data contractually required in the deliverable. This included checking the data package for the results of each analyte requested for each field sample submitted in the analytical batch, along with requested QC documentation for the respective methods. The data package was complete for SVOCs for this SDG.

1.2 Laboratory Case Narrative/Cooler Receipt Form

The laboratory case narrative indicated that SVOC MS/MSD recoveries for 4-chloroaniline were outside evaluation criteria in sample CPA-MW-1D-0811.

No problems were indicated in the cooler receipt form for the validated samples.

1.3 Sample Preservation and Holding Times

Review of the sample collection and analysis dates involved comparing the chain-of-custody, the summary forms, the raw data forms, and the chromatograms for accuracy, consistency, and holding time compliance. The cooler receipt form indicated that four out of seven coolers were received by the laboratory at 0.4° C, 0.8° C, 0.9° C and 1.0° C which is outside the 4° C \pm 2° C criteria, and were extracted within 7 days of collection and analyzed within 40 days of extraction. No qualification of data was required due to sample preservation or holding time criteria.

1.4 Instrument Performance

GC/MS instrument performance checks were performed to ensure mass resolution, identification, and instrument sensitivity. Criteria for evaluation of instrument performance included possible transcription/calculation errors, adherence to instrument tuning frequency requirements, mass assignments, and ion abundance criteria. Instrument performance check samples were evaluated against the laboratory tuning criteria established in Method 8270C.

Based on the raw data, the ion abundance criteria were within evaluation criteria for all masses, therefore; no qualification of the data was required. The raw data forms were checked against the summary forms and no calculation or transcription errors were noted.

1.5 Initial Calibration

An Initial calibration (ICAL) was established to assess whether the instrument was capable of producing acceptable qualitative and quantitative data for volatile analysis. Samples as part of SDG KPS065 were analyzed using instrument MSN5973. The ICAL for instrument MSN5973 was established on 8/16/2011 prior to sample analysis and using at least five concentration standards to establish the initial calibration curve as required by Method 8270C. An average response factor (RF) was determined for each target analyte, and the RFs were reviewed and verified as greater than 0.05 for all target analytes.

Review of the initial calibration summary forms indicated calibration check compounds (CCCs) had percent relative standard deviations (%RSDs) \leq 30%. All other target analytes had %RSDs less than 15%.

Recalculations of the RFs and %RSD for one compound per internal standard were performed, and no errors in calculation were noted.

1.6 Calibration Verification

Review of sample chromatograms indicated the calibration verifications (CVs) were performed at the required frequency of every 12 hours. Review of continuing calibration summary forms indicated all RFs met the evaluation criteria of greater than 0.05 for all target analytes. In addition, percent differences (%Ds) met the evaluation criteria of less than or equal to 20% for CCCs and target analytes that were quantitated using linear calibration (response factor).

Recalculations of the RFs and %RSD for one compound per internal standard were performed, and no errors in calculation were noted.

1.7 Blank Samples

The purpose of method blank samples is to evaluate the existence and magnitude of contamination problems emanating from laboratory activities. Method blank samples were analyzed with each analytical batch as required by USEPA SW-846 Method 8270C. All target

compounds in the blank samples were reported as non-detect. No qualification of data was required.

1.8 Surrogate Spike Recoveries

Surrogate compounds were used to evaluate the overall laboratory sample preparation efficiency on a per-sample basis. Surrogate recoveries were within the method acceptance criteria for all validated samples.

A minimum of 10% of the surrogate recoveries was recalculated, and the summary forms versus the raw data were verified. No calculation or transcription errors were noted.

1.9 Matrix Spike/Matrix Spike Duplicate (MS/MSD) Samples

MS/MSD samples are analyzed to assess potential matrix effects. Sample CPA-MW-5D-0811 was spiked and analyzed for SVOCs. MS/MSD recoveries outside of evaluation criteria for SVOCs are included in the table below.

MS/MSD ID	Parameter	Analyte	MS/MSD Recovery (%)	RPD	MS/MSD/ RPD Criteria
CPA-MW-5D-0811	SVOCs	4-Chloroaniline	20/24	15	70-130/30

USEPA National Functional Guidelines for Organic Data Review indicates that organic data does not require qualification based on MS/MSD data alone. LCS/LCSD recoveries were within evaluation criteria for 4-Chloroaniline; therefore, no qualification of data was required. A minimum of 10% of the MS/MSD recoveries were recalculated and compared to the raw data; no calculation or transcription errors were noted. No qualification of data was required based on MS/MSD recoveries.

1.10 Internal Standard Areas and Retention Times

Internal standard (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during each analytical run. Following Method 8270C, the IS areas for the samples and CVs must be within –50% to +100% and retention times must be within 30 seconds of the IS area and retention time of the midpoint of the ICAL.

The IS areas for the CVs and the validated samples in this SDG were within evaluation criteria. No qualifications to the data based on IS areas or retention times were required.

1.11 Laboratory Control Sample (LCS)

Laboratory control samples were analyzed with each analytical batch to assess the accuracy of the analytical process. LCS recoveries were within evaluation criteria. No qualifications of data were required based on LCS recoveries.

A minimum of 10% of the spiking compound recoveries for the LCS were recalculated from the raw data and verified using the LCS summary forms, and no calculation or transcription errors were noted.

1.12 Target Compound Identification and Quantitation

For validation of the compound identification, chromatograms were reviewed to verify the major peaks were identified, the spectra of the identified compounds were verified against the library

spectra, and the relative retention time was no greater than 0.06 different from the associated CV retention times. A minimum of 10% of the detected target analytes and spiking compounds were verified. No anomalies were noted with the identification of the target compounds in the samples.

For the validation of compound quantitation, 10% of the target analytes were recalculated from the raw data, and no calculation errors were noted. Additionally, the reporting limits were verified to determine if reporting limits (RLs) were adjusted for dilutions. No qualification of the data was required and review of the data indicated the correct RLs were reported.

1.13 Overall Data Assessment

Based on the criteria outlined, it is recommended that the results reported for these analyses are accepted for their intended use. Acceptable levels of accuracy and precision, based on LCS and surrogate data were achieved for this SDG. In addition, completeness defined to be the percentage of analytical results, which are judged to be valid was 100% for this SDG.

FULL VALIDATION OF METALS DATA - SDG KPS065

This section describes the full data validation for four water samples which were prepared by USEPA SW-846 Methods 3005A and analyzed for total and dissolved iron and manganese by USEPA SW-846 Method 6010B. Samples were analyzed by TestAmerica Laboratory of Savanna, Georgia, and submitted as part of sample delivery group (SDG) KPS065. Samples included as part of this validation are listed below:

Sample Identification				
BSA-MW-1S-0811	BSA-MW-1S-F(0.2)-0811			
BSA-MW-5D-0811	BSA-MW-4D-F(0.2)-0811			

Criteria were identified in the Revised Long-Term Monitoring Program (LTMP) Work Plan (Solutia 2009) and USEPA SW-846 Method 6010B. Evaluation of the analytical data followed procedures outlined in the USEPA Contract Program National Functional Guidelines for Inorganic Data Review (USEPA 2004) where applicable to SW-846 Method 6010B.

Criteria evaluated included the following method performance criteria:

- Data package completeness
- Laboratory case narrative /cooler receipt form
- Sample preservation and holding times
- Blank contamination
- Initial calibration
- Calibration verification
- Laboratory control sample (LCS)
- Matrix spike/matrix spike duplicate (MS/MSD)
- Laboratory duplicate sample
- ICP serial dilution
- ICP interference check samples (ICS)
- Sample result verification
- Overall assessment of data

1.1 Data Package Completeness

The data package was reviewed to make certain that it contained the data contractually required in the deliverable. This included checking the data package for the results of each analyte requested for each field sample submitted in the analytical batch, along with requested QC documentation for the respective methods. The data package was complete for metals for this SDG.

1.2 Laboratory Case Narrative / Cooler Receipt Form

The laboratory case narrative and cooler receipt form did not indicate any problems for the validated samples.

1.3 Sample Preservation and Holding Times

Review of the sample collection and analysis dates involved comparing the chain-of-custody, the sample preparation logs, the analysis run logs, and raw data forms for holding time compliance. The cooler receipt form indicated that four out of seven coolers were received by the laboratory at 0.4° C, 0.8° C, 0.9° C and 1.0° C which are outside the 4° C \pm 2° C criteria. The samples were received in good condition; therefore no qualification of data was required. The validated samples were received at pH<2 and were analyzed within the evaluation criteria of 6 months for metals. No qualification of data was required based on holding time criteria or sample preservation.

1.4 Blank Contamination

The purpose of blank samples was to evaluate the existence and magnitude of contamination problems emanating from laboratory activities. Initial calibration, continuing calibration, and preparation blanks were reported non-detect for all metals analyzed. No qualification of data was required based on blank results.

1.5 Initial Calibration

Initial calibration (ICAL) criteria were established to assess whether the instrument was capable of producing acceptable qualitative and quantitative data for metals analyses. An ICAL was analyzed at the beginning of the run sequence. ICAL curves were established using a blank and three standards for analysis of metals by inductively coupled plasma atomic emission (ICP-AE). All initial calibration verification (ICV) recoveries were within evaluation criteria (ICP metals, 90-110%). A minimum of 10% of the ICAL curve and ICV recoveries were recalculated and compared to the raw data; no calculation or transcription errors were noted. No qualification of the data was required based on ICV data.

1.6 Calibration Verification

Calibration Verification (CV) criteria were established to assess whether the instrument was capable of producing acceptable qualitative and quantitative data established by the ICAL. The laboratory analyzed CV samples at a frequency of 10% as specified by the methodologies. CV samples associated with the validated samples had recoveries within the evaluation criteria (ICP metals, 90-110%). A minimum of 10% of the CV sample recoveries were recalculated and compared to the raw data and no calculation or transcription errors were noted.

1.7 Laboratory Control Sample (LCS)

Laboratory control spike (LCS) samples were analyzed to assess the accuracy of the analytical method and to demonstrate laboratory performance. The LCS recoveries for metals were within evaluation criteria (75-125%) for metals. A minimum of 10% of the LCS recoveries were recalculated and compared to the raw data; no calculation or transcription errors were noted. No qualification of data was required based on LCS recoveries.

1.8 Matrix Spike/Matrix Spike Duplicate (MS/MSD)

MS/MSD samples are analyzed to assess accuracy, precision and the effects of matrix interference during the analysis of a particular sample. Sample BSA-MW-1S-0811 was spiked and analyzed for total and dissolved metals. All MS/MSD recoveries were within the method acceptance criteria for the validated samples. A minimum of 10% of the MS/MSD recoveries

were recalculated and compared to the raw data; no calculation or transcription errors were noted. No qualification of data was required based on MS/MSD recoveries.

1.9 Laboratory Duplicate Sample

Laboratory duplicate samples are analyzed to assess the precision of a particular sample. No laboratory duplicates were analyzed for the metals samples chosen for validation.

1.10 ICP Serial Dilution

Serial dilutions were analyzed to assess the potential significant physical or chemical interferences due to sample matrix. Serial dilutions were analyzed on a sample (BSA-MW-1S-0811) in this SDG for metals. Serial dilution percent differences (%Ds) were within evaluation criteria (+/- 10%). No qualification of data was required.

1.11 ICP Interference Check Sample

An Interference Check Sample (ICS) was analyzed to verify the contract laboratory's interelement and background correction factors for analysis of metals by ICP. The laboratory analyzed the ICS at the beginning of the analytical run as specified in USEPA SW-846 Method 6010B. The ICS recoveries for all metals analyzed were within evaluation criteria (80-120%); therefore, no qualification of the ICP data was required. A minimum of 10% of the ICS recoveries were recalculated and compared to the raw data; no transcription and calculation errors were noted.

1.12 Sample Result Verification

The metals results were recalculated to validate that analyte quantitation was derived accurately, and no calculation errors were noted. Data summary forms were reviewed and compared to the raw data package. No transcription errors were noted and the correct reporting limits were used.

1.13 Overall Data Assessment

Based on the criteria outlined, it is recommended that the results reported for these analyses are accepted for their intended use. Completeness, defined to be the percentage of analytical results that are judged to be valid was 100% for this SDG.

FULL VALIDATION OF GENERAL CHEMISTRY DATA - SDG KPS065

This section describes the full data validation of four water samples which were analyzed for various wet chemistry parameters. The analytical parameters and methodologies are summarized below:

Parameter	Method	Reference
Nitrate/Nitrite	353.2	
Sulfate	375.4	
Total and Dissolved Organic Carbon	415.1	USEPA Methods for Chemical Analysis of
Chloride	325.2	Water and Waste (USEPA, 1983)
Alkalinity	310.1	
Carbon Dioxide	Calc from 310.1	
Dissolved Gasses	RSK-175	RSK-175

Samples were analyzed by TestAmerica Laboratory, of Savannah, Georgia, and submitted as part of sample delivery group (SDG) KPS065. Samples included as a part of this validation are listed below:

Sample Identification			
BSA-MW-1S-0811	BSA-MW-1S-F(0.2)-0811		
BSA-MW-5D-0811	BSA-MW-4D-F(0.2)-0811		

Criteria were identified in the Revised Long-Term Monitoring Program (LTMP) Work Plan (Solutia 2009) and evaluation of the analytical data followed procedures outlined in USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (USEPA 2004), where applicable to the above mentioned USEPA Methods. The evaluation criteria used during the validation were a combination of those criteria presented in the respective methods and the laboratory criteria based on historical data.

Criteria evaluated included the following method performance criteria:

- Data package completeness
- Laboratory case narrative/cooler receipt form
- Sample preservation and holding times
- Blank contamination
- Initial calibration
- Calibration verification
- Laboratory control sample (LCS)
- Laboratory duplicate analysis
- Matrix spike/matrix spike duplicate samples (MS/MSD)
- Sample result verification
- Overall data assessment

1.1 Data Package Completeness

The data package was reviewed to make certain that it contained the data contractually required in the deliverable. This included checking the data package for results of each analyte requested for each field sample submitted in the analytical batch, along with requested QC documentation for the respective method. The data package was complete for general chemistry parameters.

1.2 Laboratory Case Narrative/Cooler Receipt Form

The laboratory case narrative indicated chloride MS/MSD recoveries in sample BSA-MW-1S-0811 were outside evaluation criteria. Several samples were diluted due to high levels of target analytes. These issues are addressed further in the appropriate sections below. The cooler receipt form did not indicate any problems for the validated samples.

1.3 Sample Preservation and Holding Times

Review of the sample collection, extraction and analyses dates involved comparing the chain-of-custody, the sample preparation logs, the analysis run logs, and raw data forms for holding time compliance. The cooler receipt form indicated that four out of seven coolers were received by the laboratory at 0.4° C, 0.8° C, 0.9° C and 1.0° C which is outside the 4° C \pm 2° C criteria, and at a pH <2 for sulfate. Total organic carbon samples were received at a pH >2; pH was adjusted properly at the laboratory and therefore, no qualification of data was required. All samples were analyzed within holding time criteria; 28 days for chloride, nitrate/nitrite, sulfate, total organic carbon and 14 days for alkalinity and RSK-175. No qualifications of data were required based on holding times and sample preservation.

1.4 Blank Contamination

The purpose of method blank samples was to evaluate the existence and magnitude of contamination problems emanating from laboratory activities. Method blank samples were analyzed with each analytical batch as required. A review of the method blank summary forms and the raw data forms indicated all target compounds were reported as non-detect.

1.5 Initial Calibration

Initial calibration verification (ICV) criteria were established to assess whether the instrument was capable of producing acceptable qualitative and quantitative data for the wet chemistry analyses. Alkalinity concentrations are determined by titration; therefore, no calibration curve was generated. The verification of alkalinity analyses was achieved with the analysis of laboratory control samples (LCS). The LCS data is further discussed in the appropriate section below. An initial calibration was established at the beginning of the run sequence for the all other analyses. A minimum of five standards was used to establish the initial calibration curve as required by the analytical methods. Review of the initial calibration data indicated that the r values were greater than 0.995 for all calibration curves; therefore, no qualification of data was required. The ICAL for RSK-175 was established using at least eight concentration standards to establish the external calibration and all r values were greater than or equal to 0.995. No qualification of data was required based on initial calibration. Approximately 10% of the initial calibration and ICV recoveries were recalculated and compared to the raw data; no calculation or transcription errors were noted.

1.6 Calibration Verification

Calibration verification (CV) criteria were established to assess whether the instrument was capable of producing acceptable qualitative and quantitative data established by the initial calibration curve. CV samples were analyzed at the required frequency of every 10 samples and the percent differences (%D) or percent drift (%drift) values were within evaluation criteria for each analytical method. No qualification of data was required based on %drift.

Approximately 10% of the CV sample recoveries were recalculated and compared to the raw data. No calculation or transcription errors were noted.

1.7 Laboratory Control Sample (LCS)

Laboratory control samples (LCS) were established to assess the accuracy of the analytical method and to demonstrate laboratory performance. LCS recoveries were within the evaluation criteria; therefore, no qualification of data was required. A minimum of 10% of LCS recoveries were recalculated and compared to the raw data; no calculation or transcription errors were noted.

1.8 Laboratory Duplicate Analysis

Laboratory duplicate samples assess the precision of a particular sample. Laboratory duplicates were analyzed for the alkalinity, free carbon dioxide, chloride, nitrate as N, sulfate, dissolved organic carbon and total organic carbon. All duplicate analyses results were within laboratory control limits. No qualification of data was required.

1.9 Matrix Spike/ Matrix Spike Duplicate Samples (MS/MSD)

MS/MSD samples are analyzed to assess the accuracy, precision and the effects of matrix interference during the analysis of a particular sample. Sample BSA-MW-1S-0811 was spiked and analyzed for chloride, nitrogen, nitrate-nitrite, sulfate and total organic carbon. MS/MSD recoveries which were outside of evaluation criteria are included in the table below.

MS/MSD ID	Parameter	Analyte	MS/MSD Recovery (%)	RPD	MS/MSD/ RPD Criteria
BSA-MW-1S-0811	Chloride	Chloride	77/74	0	85-115/30

Chloride MS/MSD recoveries in sample BSA-MW-1S-0811 could not be evaluated because the sample concentrations were greater than four times (4X) the matrix spike concentration. No qualification of data was required.

The MS/MSD percent recovery data was recalculated and compared to the raw data. No calculation or transcription errors were noted.

1.10 Sample Result Verification

10% of the validated sample results were recalculated to verify that analyte quantitation was derived accurately, and no calculation errors were noted. Data summary forms were reviewed and compared to the raw data package. No transcription errors were noted and the correct reporting limits were used.

1.11 Overall Data Assessment

Based on the criteria outlined, it is recommended that the results reported for these analyses be accepted for their intended use. Completeness, defined to be the percentage of analytical results that are judged to be valid was 100 percent for this SDG.

SDG KPS065

Results of Samples from Monitoring Wells:

BSA-MW-1S

BSA-MW-2D

BSA-MW-3D

BSA-MW-4D

BSA-MW-5D

CPA-MW-1D

CPA-MW-2D

CPA-MW-3D

CPA-MW-4D

CPA-MW-5D

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-71407-1

TestAmerica Sample Delivery Group: KPS065 Client Project/Site: WGK LTM - 3Q11 - AUG 2011

Revision: 1

For:

Solutia Inc. 575 Maryville Centre Dr. Saint Louis, Missouri 63141

Attn: Mr. Jerry Rinaldi

Lidya gricia

Authorized for release by: 09/21/2011 04:50:26 PM

Lidya Gulizia Project Manager II lidya.gulizia@testamericainc.com

cc: Bob Billman

Dave Palmer

SEP 22 2011 MM

Results relate only to the items tested and the sample(s) as received by the laboratory. The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

IS EPA ARCHIVE DOCUMEN

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	5
Method Summary	6
Definitions	7
Detection Summary	8
Client Sample Results	13
Surrogate Summary	38
QC Sample Results	40
QC Association	57
Chronicle	64
Chain of Custody	71
Receipt Checklists	74
Certification Summary	77

Case Narrative

Client: Solutia Inc.

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Job ID: 680-71407-1

Laboratory: TestAmerica Savannah

Narrative

Job Narrative 680-71407-1 / SDG KPS065 (Revised 9/21/11)

Receipt

The following sample(s) was received with headspace in the sample vial: BSA-MW-2D-0811 (680-71445-1), CPA-MW-3D-0811 (680-71445-3), CPA-MW-5D-0811 (680-71445-5 MS), CPA-MW-5D-0811 (680-71445-5 MSD). Three of three vials for BSA-MW2D contained headspace; two of three vials for CPA-MW3D and one of three for both -CPA-MW5D MS/MSD

The following sample(s) was received with headspace in the sample vial: CPA-MW-1D-0811 (680-71407-6), CPA-MW-2D-0811 (680-71407-3). Sample CPA-MS2D had 1 of 3 vials and CPA-MW1D had 3 of 3 vials with headspace.

The following sample(s) was received with headspace in 3 of the 3 sample vials: CPA-MW-4D-0811 (680-71493-3).

All other samples were received in good condition within temperature requirements.

GC/MS VOA

Method(s) 8260B: A full list spike was utilized for this method. Due to the large number of spiked analytes, there is a high probability that one or more analytes will recover outside acceptance limits. The laboratory's SOP allows for 4 analytes to recover outside criteria for this method when a full list spike is utilized. The LCS associated with batch 212578 had 1 analyte outside control limits; therefore, re-extraction/re-analysis was not performed. These results have been reported and qualified.

Method(s) 8260B: The following samples were diluted due to the abundance of target analytes: BSA-MW-1S-0811 (680-71407-1), CPA-MW-1D-0811 (680-71407-6), CPA-MW-2D-0811 (680-71407-3). Elevated reporting limits (RLs) are provided.

Method(s) 8260B: The field blank associated with these samples contained a detection above the reporting limit (RL) for the following analyte: Benzene. The sample was reanalyzed with concurring results.

No other analytical or quality issues were noted.

GC/MS Semi VOA

Method(s) 8270C: A full list spike was utilized for this method. Due to the large number of spiked analytes, there is a high probability that one or more analytes will recover outside acceptance limits. The laboratory's SOP allows for 4 analytes to recover outside criteria for this method when a full list spike is utilized. The MS/MSD associated with batch 212318 had 1 analytes outside control limits; therefore, re-extraction/re-analysis was not performed. These results have been reported and qualified.

Method(s) 8270C: The following sample(s) was diluted due to the abundance of target analytes: CPA-MW-1D-0811 (680-71407-6), CPA-MW-4D-0811 (680-71493-3). Elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

GC VOA

Method(s) RSK-175: Manual integration was performed on the following sample(s): (LCS 680-212629/8).

No other analytical or quality issues were noted.

Metals

No analytical or quality issues were noted.

General Chemistry

Method(s) 325.2, SM 4500 Cl- E: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 212944 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria.

Method(s) 415.1: The following sample(s) was diluted due to the nature of the sample matrix: CPA-MW-1D-F(0.2)-0811 (680-71407-7). Elevated reporting limits (RLs) are provided. The The DOC sample result for this sample was reanalyzed at dilutions of 1:10 and 1:25 by the analyst to confirm the DOC result as it exceeded the corresponding TOC result for the associated sample CPA-MW-1D-0811

F

5

13

Client: Solutia Inc.

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Job ID: 680-71407-1 (Continued)

Laboratory: TestAmerica Savannah (Continued)

(680-71407-6).

No other analytical or quality issues were noted.

Comments

The report was revised on September 21, 2011 in order to correct the dilution factor from 200 to 2000 in the volatiles analysis of sample BSA-MW-2D-0811 (680-71445-1) for which results were reported erroneously at 10X less than the historical data for the sample.

No other additional comments.

SEP: 22 2011 MAN

Sample Summary

Client: Solutia Inc.

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-71407-1	BSA-MW-1S-0811	Water	08/15/11 10:40	08/16/11 09:25
680-71407-2	BSA-MW-1S-F(0.2)-0811	Water	08/15/11 10:40	08/16/11 09:25
680-71407-3	CPA-MW-2D-0811	Water	08/15/11 13:55	08/16/11 09:25
680-71407-4	CPA-MW-2D-F(0.2)-0811	Water	08/15/11 13:55	08/16/11 09:25
680-71407-5	CPA-MW-2D0811-AD	Water	08/15/11 13:55	08/16/11 09:25
680-71407-6	CPA-MW-1D-0811	Water	08/15/11 15:35	08/16/11 09:25
680-71407-7	CPA-MW-1D-F(0.2)-0811	Water	08/15/11 15:35	08/16/11 09:25
680-71407-8	TB-1	Water	08/15/11 00:00	08/16/11 09:25
680-71445-1	BSA-MW-2D-0811	Water	08/16/11 09:20	08/17/11 09:19
680-71445-2	BSA-MW-2D-F(0.2)-0811	Water	08/16/11 09:20	08/17/11 09:19
680-71445-3	CPA-MW-3D-0811	Water	08/16/11 10:50	08/17/11 09:19
680-71445-4	CPA-MW-3D-F(0.2)-0811	Water	08/16/11 10:50	08/17/11 09:19
680-71445-5	CPA-MW-5D-0811	Water	08/16/11 13:05	08/17/11 09:19
680-71445-6	CPA-MW-5D-F(0.2)-0811	Water	08/16/11 13:05	08/17/11 09:19
680-71445-7	BSA-MW-3D-0811	Water	08/16/11 14:55	08/17/11 09:19
680-71445-8	BSA-MW-3D-F(0.2)-0811	Water	08/16/11 14:55	08/17/11 09:19
680-71445-9	BSA-MW-3D-0811-EB	Water	08/16/11 16:05	08/17/11 09:19
680-71445-10	TB-2	Water	08/16/11 00:00	08/17/11 09:19
680-71493-1	BSA-MW-4D-0811	Water	08/17/11 09:50	08/18/11 09:37
680-71493-2	BSA-MW-4D-F(0.2)-0811	Water	08/17/11 09:50	08/18/11 09:37
680-71493-3	CPA-MW-4D-0811	Water	08/17/11 11:05	08/18/11 09:37
680-71493-4	CPA-MW-4D-F(0.2)-0811	Water	08/17/11 11:05	08/18/11 09:37
380-71493-5	BSA-MW-5D-0811	Water	08/17/11 13:10	08/18/11 09:37
880-71493-6	BSA-MW-5D-F(0.2)-0811	Water	08/17/11 13:10	08/18/11 09:37
680-71493-7	TB-3	Water	08/17/11 00:00	08/18/11 09:37

SEP 22 2011 MM

Method Summary

Client: Solutia Inc.

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL SAV
8270C	Semivolatile Organic Compounds (GC/MS)	SW846	TAL SAV
RSK-175	Dissolved Gases (GC)	RSK	TAL SAV
6010B	Metals (ICP)	SW846	TAL SAV
310.1	Alkalinity	MCAWW	TAL SAV
325.2	Chloride	MCAWW	TAL SAV
353.2	Nitrogen, Nitrate-Nitrite	MCAWW	TAL SAV
375.4	Sulfate	MCAWW	TAL SAV
415.1	TOC	MCAWW	TAL SAV
415.1	DOC	MCAWW	TAL SAV

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

RSK = Sample Prep And Calculations For Dissolved Gas Analysis In Water Samples Using A GC Headspace Equilibration Technique, RSKSOP-175,

Rev. 0, 8/11/94, USEPA Research Lab

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

SEP. 22 2011

TEQ

Toxicity Equivalent Quotient (Dioxin)

Definitions/Glossary

Client: Solutia Inc.

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Qualifiers	
GC/MS VOA	
Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.
*	LCS or LCSD exceeds the control limits
GC/MS Semi	VOA
Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.
F	MS or MSD exceeds the control limits
GC VOA	
Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.
Metals	
Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.
General Chen	•
Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.
4	MS, MSD: The analyte present in the original sample is 4 times greater than the matrix spike concentration; therefore, control limits are not applicable.
Glossary	r.
Abbreviation	These commonly used abbreviations may or may not be present in this report.
₩	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample
EDL	Estimated Detection Limit (Dioxin)
EPA	United States Environmental Protection Agency
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or method detection limit if shown)
PQL	Practical Quantitation Limit
RL	Reporting Limit
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

SEP 22 2011

Detection Summary

Client: Solutia Inc.

Benzene

Chlorobenzene

1,2-Dichlorobenzene

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Client Sample ID: BSA-MW	V-13-0011					Li	aυ	Sample IL): 680-71407 -
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	520000	2	5000		ug/L	5000	-	8260B	Total/NA
Methane	7600		0.58		ug/L	1		RSK-175	Total/NA
Iron	4.5		0.050		mg/L	1		6010B	Total Recove
Manganese	0.63	n #	0.010	3 8	mg/L	1		6010B	Total Recove
Chloride	240		5.0		mg/L	5		325.2	Total/NA
Total Organic Carbon	6.9		1.0		mg/L	1		415.1	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Alkalinity	860	-	5.0		mg/L		_	310.1	Total/NA
Carbon Dioxide, Free	39		5.0		mg/L	1		310.1	Total/NA
Client Sample ID: BSA-MW	/-1S-F(0.2)-081	1				La	ab	Sample ID): 680-71407-
Analyte	Pacult	Qualifier	RL	MDL	Unit	Dil Eac	n	-Method	Pron Tuno
Iron, Dissolved	4.4	Qualifier	0.050		mg/L	1	_	6010B	Prep Type Dissolved
	0.62		0.010			1		6010B	Dissolved
Manganese, Dissolved Dissolved Organic Carbon	6.6		1.0		mg/L mg/L	1		415.1	Dissolved
Client Sample ID: CPA-MW	/-2D-0811					Lá	ab	Sample ID): 680-71407-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chlorobenzene	12000		200		ug/L	200	_	8260B	Total/NA
1,4-Dichlorobenzene	1700		200		ug/L	200		8260B	Total/NA
2-Chlorophenol	22		11		ug/L	1		8270C	Total/NA
Ethane	4.1		1.1		ug/L	1		RSK-175	Total/NA
Methane	3600		0.58		ug/L	1		RSK-175	Total/NA
Iron	5.6		0.050		mg/L	1		6010B	Total Recove
Manganese	0.37		0.010		mg/L	1		6010B	Total Recove
Chloride	65		1.0		mg/L	1		325.2	Total/NA
Total Organic Carbon	12		1.0		mg/L	1		415.1	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Alkalinity	590		5.0		mg/L	<u></u>	-	310.1	Total/NA
Carbon Dioxide, Free	41		5.0		mg/L	1		310.1	Total/NA
Client Sample ID: CPA-MW	/-2D-F(0.2)-081	1				La	ıb	Sample ID): 680-71407-4
A	Passili	Qualifier	RL	MDL	I I mile	Dil Faa	_	Madhad	D T
Analyte Iron, Dissolved	5.7	Quamier	0.050	MDL	mg/L	Dil Fac	_	Method 6010B	Prep Type Dissolved
Manganese, Dissolved	0.38		0.010		mg/L	1		6010B	Dissolved
Dissolved Organic Carbon	12		1.0		mg/L	1		415.1	Dissolved
- Client Sample ID: CPA-MW	/_2D0811_AD					l a	ıh	Sample ID): 680-71407-!
	ID WITHD				_			Campie ID	. 300-/ 140/-
Analyte		Qualifier	RL	MDL	5		D	Method	Prep Type
Chlorobenzene	12000		200		ug/L	200		8260B	Total/NA
1,4-Dichlorobenzene	1300		200		ug/L	200		8260B	Total/NA
2-Chlorophenol	22		9.8		ug/L	1		8270C	Total/NA
Client Sample ID: CPA-MW	/-1D-0811					La	b	Sample ID	: 680-71407-6
- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Renzene	6700	-	200		ua/l	200	_	RORAD	Total/NIA

TestAmerica Sayannah
SEP 2 2 2011

Total/NA

Total/NA

Total/NA

200

200

200

ug/L

ug/L

ug/L

200

200

200

8260B

8260B

8260B

6700

19000

26000

Client: Solutia Inc.

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

Lab Sample ID: 680-71407-6

Lab Sample ID: 680-71407-8

Lab Sample ID: 680-71445-1

Lab Sample ID: 680-71445-2

Lab Sample ID: 680-71445-3

SDG: KPS065

Client Sample ID: CPA-MW-1D-0811 (Continued)

Analyte	Result Qualif	ier RL	MDL Unit	Dil Fac	D Method	Prep Type
1,3-Dichlorobenzene	2300 * 5	200	ug/L	200	8260B	Total/NA
1,4-Dichlorobenzene	17000 J	200	. ug/L	200	8260B	Total/NA
1,2,4-Trichlorobenzene	910	48	ug/L	5	8270C	Total/NA
Ethane	36	1.1	ug/L	1	RSK-175	Total/NA
Methane	13000	0.58	ug/L	1	RSK-175	Total/NA
Iron	2.7	0.050	mg/L	1	6010B	Total Recovera
Manganese	0.23	0.010	mg/L	1	6010B	Total Recovera
Chloride	140	2.0	mg/L	2	325.2	Total/NA
Sulfate	15	5.0	mg/L	1	375.4	Total/NA
Total Organic Carbon	25	10	mg/L	10	415.1	Total/NA
Analyte	Result Qualifi	ier RL	RL Unit	Dil Fac	D Method	Prep Type
Alkalinity	1000	5.0	mg/L		310.1	Total/NA

C	lie	ent	Sa	mp	ole	ID	: C	PA	1-M	W-	1D-F	(0.2))-0811	
													5	

Client Sample ID: CPA-MW-1D-F(0.2)-0811						Lab Sample ID: 680-714						
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type			
Iron, Dissolved	1.6		0.050		mg/L		_	6010B	Dissolved			
Manganese, Dissolved	0.13		0.010		mg/L	1		6010B	Dissolved			
Dissolved Organic Carbon	57		25		mg/L	25		415.1	Dissolved			

Client Sample ID: TB-1

No Detections

Client Sample ID: BSA-MW-2D-0811

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	220000	T	2000		ug/L	2000	0.000	8260B	Total/NA
1,4-Dioxane	36	0	9.5		ug/L	1		8270C	Total/NA
Ethane	11		1.1		ug/L	1		RSK-175	Total/NA
Methane	7100	K. R. FOR DIRECT MORE	0.58	14 45 45 16 16	ug/L	1		RSK-175	Total/NA
Iron	4.9		0.050		mg/L	1		6010B	Total Recovera
Manganese	0.66		0.010		mg/L	1		6010B	Total Recovera
Chloride	110		2.0		mg/L	2		325.2	Total/NA
Total Organic Carbon	6.0		1.0		mg/L	1		415.1	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Alkalinity	650	(5.0		mg/L	1		310.1	Total/NA
Carbon Dioxide, Free	42		5.0		mg/L	1		310.1	Total/NA

Client Sample ID: BSA-MW-2D-F(0.2)-0811

ř	and the same of th									
-	Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
	Iron, Dissolved	4.8		0.050		mg/L	1	8	6010B	 Dissolved
	Manganese, Dissolved	0.66		0.010		mg/L	1		6010B	Dissolved
-	Dissolved Organic Carbon	6.1		1.0		mg/L	1		415.1	Dissolved

Client Sample ID: CPA-MW-3D-0811

	Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type	
	Benzene	40		5.0	-	ug/L	5		8260B	Total/NA	
0.0000000000000000000000000000000000000	Chlorobenzene	460		5.0		ug/L	5		8260B	Total/NA	
	Ethane	5.2		1.1		ug/L	1		RSK-175	Total/NA	
	Methane	1500		0.58		ug/L	1		RSK-175	Total/NA	

TestAmerica Savannah

US EPA ARCHIVE DOCUMENT

Client: Solutia Inc.

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Client Sample ID: CPA-MW-3D-0811 (Continued)	Lab Sample ID: 680-71445-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Iron	10	2	0.050		mg/L			6010B	Total Recovera
Manganese	0.56		0.010		mg/L	1		6010B	Total Recovera
Chloride	110		2.0		mg/L	2		325.2	Total/NA
Total Organic Carbon	10		1.0		mg/L	1		415.1	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Alkalinity	560		5.0	_	mg/L		_	310.1	Total/NA
Carbon Dioxide, Free	31		5.0		mg/L	1		310.1	Total/NA

Client Sample ID: CPA-MW-3D-F(0.2)-0811

Lab Sample ID: 680-71445-4

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
Iron, Dissolved	10	0.050	mg/L	1	6010B	Dissolved
Manganese, Dissolved	0.57	0.010	mg/L	_ 1	6010B	Dissolved
Dissolved Organic Carbon	9,9	1.0	mg/L	1	415.1	Dissolved

Client Sample ID: CPA-MW-5D-0811

Lab Sample ID: 680-71445-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chlorobenzene	1200		20		ug/L	20		8260B	Total/NA
2-Chlorophenol	11		9.5		ug/L	1		8270C	Total/NA
Methane	10		0.58		ug/L	1	8	RSK-175	Total/NA
Iron	82		0.050		mg/L	1		6010B	Total Recovera
Manganese	2.4		0.010		mg/L	1		6010B	Total Recovera
Chloride	310		5.0	18	mg/L	5		325.2	Total/NA
Sulfate	1500		250		mg/L	50		375.4	Total/NA
Total Organic Carbon	3.9		1.0		mg/L	1		415.1	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Alkalinity	380		5.0		mg/L	1	-	310.1	Total/NA
Carbon Dioxide, Free	96		5.0		mg/L	1		310.1	Total/NA

Client Sample ID: CPA-MW-5D-F(0.2)-0811

Lab Sample ID: 680-71445-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Iron, Dissolved	84		0.050		mg/L	1	_	6010B	 Dissolved
Manganese, Dissolved	2.5		0.010		mg/L	1		6010B	Dissolved
Dissolved Organic Carbon	4.0		1.0		mg/L	1		415.1	Dissolved

Client Sample ID: BSA-MW-3D-0811

Lab Sample ID: 680-71445-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	52		10		ug/L	10	_	8260B	Total/NA
Chlorobenzene	1500		10		ug/L	10		8260B	Total/NA
1,2-Dichlorobenzene	24		10		ug/L	10		8260B	Total/NA
1,3-Dichlorobenzene	22	U 5 G	10	222 22	ug/L	10		8260B	Total/NA
1,4-Dichlorobenzene	520		10		ug/L	10		8260B	Total/NA
2-Chlorophenol	12		9.6		ug/L	1		8270C	Total/NA
Ethane	1.4		1.1	*	ug/L	1		RSK-175	Total/NA
Ethylene	1.2		1.0		ug/L	1		RSK-175	Total/NA
Methane	190		0.58		ug/L	1		RSK-175	Total/NA
Iron	11	8	0.050	n n n	mg/L	1		6010B	Total Recovera
Manganese	0.56		0.010		mg/L	1		6010B	Total Recovera
Chloride	90		1.0		mg/L	1		325.2	Total/NA
Sulfate	230		50		mg/L	10		375.4	Total/NA

TestAmerica Savannah

SEP 2 2 2011 MM

Detection Summary

Client: Solutia Inc.

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Client Sample ID: BSA-M	W-3D-0811 (Coi	ntinued)				L	ab	Sample II	D: 680-71445-7
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Total Organic Carbon	4.8		1.0		mg/L	1	-	415.1	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Alkalinity	480		5.0		mg/L		_	310.1	Total/NA
Carbon Dioxide, Free	27		5.0		mg/L	1		310.1	Total/NA

Client Sample ID: BSA-MW-3D-F(0.2)-0811

Lab	Samp	ole ID): 680	-714	45-8

Analyte Iron, Dissolved	Result	Qualifier	RL 0.050	MDL	Unit mg/L	Dil Fac	D	Method 6010B	Prep Type Dissolved
Manganese, Dissolved	0.55		0.010		mg/L	1		6010B	Dissolved
Dissolved Organic Carbon	4.9		1.0		mg/L	1		415.1	Dissolved

Client Sample ID: BSA-MW-3D-0811-EB

Lab Sample ID: 680-71445-9

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
Benzene	(1.5)	1.0	ug/L	1	8260B	Total/NA

Client Sample ID: TB-2

Lab Sample ID: 680-71445-10

No Detections

EPA ARCHIVE DOCUMENT

Client Sample ID: BSA-MW-4D-0811

Lab Sample ID: 680-71493-1

Analyte	Result Q	tualifier RL	MDL Unit	Dil Fac	D	Method	Prep Type
Benzene	28		ug/L	20		8260B	Total/NA
Chlorobenzene	2600	20	ug/L	20		8260B	Total/NA
1,3-Dichlorobenzene	32	20	ug/L	20		8260B	Total/NA
1,4-Dichlorobenzene	34	20	ug/L	20		8260B	Total/NA
1,4-Dioxane	32	9.6	ug/L	1		8270C	Total/NA
2-Chlorophenol	17	9.6	ug/L	1		8270C	Total/NA
Ethane	3.7	1.1	ug/L	1		RSK-175	Total/NA
Methane	150	0.58	ug/L	1		RSK-175	Total/NA
Iron	8.5	0.050	mg/L	. 1		6010B	Total Recovera
Manganese	0.64	0.010	mg/L	. 1		6010B	Total Recovera
Chloride	150	2.0	mg/L	. 2		325.2	Total/NA
Sulfate	66	25	mg/L	. 5		375.4	Total/NA
Total Organic Carbon	6.4	1.0	mg/L	. 1		415.1	Total/NA
Analyte	Result Q	ualifier RL	RL Unit	Dil Fac	D	Method	Prep Type
Alkalinity	640	5.0	mg/L	. 1		310.1	Total/NA
Carbon Dioxide, Free	54	5.0	mg/L	. 1		310.1	Total/NA

Client Sample ID: BSA-MW-4D-F(0.2)-0811

Lab Sample ID: 680-71493-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Iron, Dissolved	8.7		0.050		mg/L	1		6010B	Dissolved
Manganese, Dissolved	0.66		0.010		mg/L	1		6010B	Dissolved
Dissolved Organic Carbon	6.1		1.0		mg/L	1		415.1	Dissolved

Lab Sample ID: 680-71493-3

Analyte	Result	Qualifier	RL	MDL	Unit		Dil Fac	D	Method	Prep Type
Benzene	50	J	2.0		ug/L	180	2	_	8260B	Total/NA
Chlorobenzene	390	Ť	2.0		ug/L		2		8260B	Total/NA

TestAmerica Savannah

Client: Solutia Inc.

Carbon Dioxide, Free

Project/Site: WGK LTM - 3Q11 - AUG 2011

Client Sample ID: CPA-MW-4D-0811 (Continued)

TestAmerica Job ID: 680-71407-1

Lab Sample ID: 680-71493-3

SDG: KPS065

Analyte		Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method		Prep Type
4-Chloroaniline		140		38		ug/L	2		8270C		Total/NA
Ethane		16		1.1	244	ug/L	1		RSK-175	1211	Total/NA
Methane		8700		0.58		ug/L	1		RSK-175		Total/NA
Iron		11		0.050		mg/L	1		6010B		Total Recover
Manganese		0.24		0.010		mg/L	1	6-6-	6010B	88 8	Total Recover
Chloride		300		5.0		mg/L	5		325.2		Total/NA
Total Organic Carbon		5.9		1.0		mg/L	1		415.1		Total/NA
Analyte		Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method		Prep Type
Alkalinity	-	760		5.0		mg/L	1	-	310.1		Total/NA

Client Sample ID: CPA-MW-4D-F(0.2)-0811

Lab Sample ID: 680-71493-4

Total/NA

310.1

(DESCRIPTION DWG ROOM		700	#100 TAUS ROS 1000	C000000-000 C4 /4		4.4	ACCUMENTS OF THE SECTION OF	N 100 M N C 1000
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Iron, Dissolved	11		0.050		mg/L		==:	6010B	Dissolved
Manganese, Dissolved	0.24		0.010		mg/L	1		6010B	Dissolved
Dissolved Organic Carbon	6.3		1.0		mg/L	1		415.1	Dissolved
Land Control of the C									

5.0

mg/L

Client Sample ID: BSA-MW-5D-0811

Lab Sample ID: 680-71493-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chlorobenzene	590		10		ug/L	10		8260B	Total/NA
Ethane	10		1.1		ug/L	1		RSK-175	Total/NA
Methane	54		0.58		ug/L	1		RSK-175	Total/NA
Iron	15		0.050		mg/L	1		6010B	Total Recovera
Manganese	0.55		0.010		mg/L	1		6010B	Total Recovera
Chloride	250		5.0		mg/L	5		325.2	Total/NA
Sulfate	380		100		mg/L	20		375.4	Total/NA
Total Organic Carbon	5.0		1.0		mg/L	1		415.1	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Alkalinity	700		5.0		mg/L			310.1	Total/NA
Carbon Dioxide, Free	51		5.0		mg/L	1		310.1	Total/NA

Client Sample ID: BSA-MW-5D-F(0.2)-0811

Lab Sample ID: 680-71493-6

0	Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method		Prep Type
	Iron, Dissolved	12		0.050		mg/L	<u> </u>	_	6010B		Dissolved
	Manganese, Dissolved	0.58		0.010		mg/L	1		6010B		Dissolved
	Dissolved Organic Carbon	5.0		1.0		mg/L	1		415.1	141	Dissolved

Client Sample ID: TB-3

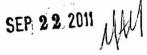
Lab Sample ID: 680-71493-7

No Detections

SEP 2 2 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065


Client Sample ID: BSA-MW-1S-0811

Date Collected: 08/15/11 10:40 Date Received: 08/16/11 09:25 Lab Sample ID: 680-71407-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	520000	•	5000		ug/L			08/22/11 16:28	500
Chlorobenzene	5000	U	5000		ug/L			08/22/11 16:28	500
1,2-Dichlorobenzene	5000	U	5000		ug/L			08/22/11 16:28	500
1,3-Dichlorobenzene	5000	U *	5000		ug/L			08/22/11 16:28	5000
1,4-Dichlorobenzene	5000	U	5000		ug/L			08/22/11 16:28	5000
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Bromofluorobenzene	107		70 - 130					08/22/11 16:28	5000
Dibromofluoro m ethane	97		70 - 130					08/22/11 16:28	5000
Foluene-d8 (Surr)	- 98		70 - 130		400		(e) (d) (08/22/11 16:28	5000
Method: 8270C - Semivolat	1070							w	
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Chiorophenol	10	U	10		ug/L		08/19/11 14:58	08/23/11 16:56	1
1,2,4-Trichlorobenzene	10	U	10		ug/L		08/19/11 14:58	08/23/11 16:56	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Phe n ol-d5	64		25 - 130				08/19/11 14:58	08/23/11 16:56	
2-Fluorophenol	66		25 - 130				08/19/11 14:58	08/23/11 16:56	-
2,4,6-Tribromophenol	83		31 - 141				08/19/11 14:58	08/23/11 16:56	1
Nitrobenzene-d5	66		39 - 130				08/19/11 14:58	08/23/11 16:56	1
2-Fluorobiphenyl	62		38 - 130				08/19/11 14:58	08/23/11 16:56	1
Гегрhепуl-d14	51		10 - 143				08/19/11 14:58	08/23/11 16:56	1
Method: RSK-175 - Dissolv	ed Gases (GC)								
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
≣thane	1.1	U	1.1		ug/L			08/22/11 18:43	1
Ethylene	1.0	U	1.0		ug/L			08/22/11 18:43	1
Methane	7600		0.58		ug/L			08/22/11 18:43	1
Method: 6010B - Metals (IC			DI.	MDI			- William Company		
Analyte		Qualifier	RL -	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
ron	4.5		0.050		mg/L		08/23/11 16:14	09/02/11 05:48	1
Manganese	0.63		0.010		mg/L		08/23/11 16:14	09/02/11 05:48	1
General Chemistry	100-1- velo	source (Valence)			50.75 Z2*			Made IMEE Code	
Analyte	O V CONTRACTOR OF THE PROPERTY	Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Chloride	240		5.0		mg/L			08/25/11 15:35	5
litrate as N	5,7 5,515	U	0.050		mg/L			08/16/11 17:31	1
Sulfate	50	U	50		mg/L			08/25/11 16:50	10
otal Organic Carbon	6.9		1.0		mg/L			08/30/11 17:03	1
Analyte	Result 860	Qualifier	RL 5.0	RL	Unit mg/L	D	Prepared	Analyzed 08/16/11 15:36	Dil Fac
Alkalinity	860		5.0		mg/L			00/10/11 10:30	-

08/16/11 15:36

5.0

mg/L

Carbon Dioxide, Free

Client: Solutia Inc.

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Client Sample ID: BSA-MW-1S-F(0.2)-0811 Lab Sample ID: 680-71407-2

Date Collected: 08/15/11 10:40 Date Received: 08/16/11 09:25 Lab Sample ID. 000-7 1407-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	4.4	-	0.050		mg/L		08/23/11 16:14	09/02/11 06:15	. 1
Manganese, Dissolved	0.62		0.010		mg/L		08/23/11 16:14	09/02/11 06:15	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	6.6		1.0		mg/L			08/23/11 08:18	1

SEP 22 2011 MM

Client: Solutia Inc.

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Lab Sample ID: 680-71407-3 Client Sample ID: CPA-MW-2D-0811

Date Collected: 08/15/11 13:55 Date Received: 08/16/11 09:25 Matrix: Water

	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Benzene	200	U	200		ug/L			08/22/11 16:57	20
Chlorobenzene	12000		200		ug/L			08/22/11 16:57	20
1,2-Dichlorobenzene	200	U	200		ug/L			08/22/11 16:57	20
1,3-Dichlorobenzene	200	U*	200		ug/L			08/22/11 16:57	20
1,4-Dichlorobenzene	1700	J	200		ug/L			08/22/11 16:57	20
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
4-Bromofluorobenzene	104		70 - 130					08/22/11 16:57	2
Dibromofluoromethane	97		70 - 130					08/22/11 16:57	2
Toluene-d8 (Surr) Method: 8270C - Semivolatile Orga	ania Compou	nds (GC/M	70130 C1		÷		ii .	08/22/11 16:57	2
Analyte		Qualifier	RL RL	MDL	Unit	D	Prepared	Analyzed	Dil F
2-Chlorophenol	22		11		ug/L	<u>-</u>	08/19/11 14:58	08/23/11 17:22	- 5111
1,2,4-Trichlorobenzene	11	U	11	740	ug/L		08/19/11 14:58	08/23/11 17:22	
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
Phenol-d5	67		25 - 130				08/19/11 14:58	08/23/11 17:22	
2-Fluorophenol	73		25 - 130				08/19/11 14:58	08/23/11 17:22	
2,4,6-Tribromophenol	80		31 - 141				08/19/11 14:58	08/23/11 17:22	
Nitrobenzene-d5	67		39 - 130				08/19/11 14:58	08/23/11 17:22	
2-Fluorobiphenyl	71		38 - 130				08/19/11 14:58	08/23/11 17:22	
Terphenyl-d14	32		10 - 143				08/19/11 14:58	08/23/11 17:22	
Method: RSK-175 - Dissolved Gas	es (GC)						8		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
	4.1		1.1		ug/L			08/22/11 18:56	
Ethane	150.5		19/016					OUIZZIII IO.OO	
Ethane Ethylene	1.0	U	1.0		ug/L			08/22/11 18:56	
		U			ug/L ug/L				
Ethylene ,	1.0 3600		1.0 0.58					08/22/11 18:56	
Ethylene Methane Method: 6010B - Metals (ICP) - Tot	1.0 3600 al Recoverab Result		1.0 0.58 RL	MDL	ug/L Unit	<u>D</u>	Prepared	08/22/11 18:56 08/22/11 18:56 Analyzed	Dil F
Ethylene Methane Method: 6010B - Metals (ICP) - Tot Analyte	1.0 3600 al Recoverab	ile	1.0 0.58 	MDL	ug/L Unit mg/L	<u>D</u>	08/23/11 16:14	08/22/11 18:56 08/22/11 18:56 Analyzed 09/02/11 06:20	Dil F
Ethylene Viethane	1.0 3600 al Recoverab Result	ile	1.0 0.58 RL	MDL	ug/L Unit	<u>D</u>	X 32 (0.4 (1.20))	08/22/11 18:56 08/22/11 18:56 Analyzed	Dil F
Ethylene Methane Method: 6010B - Metals (ICP) - Tot Analyte ron Manganese General Chemistry	1.0 3600 ral Recoverab Result 5.6 0.37	ole Qualifier	1.0 0.58 - RL 0.050 0.010		ug/L Unit mg/L mg/L	<u>D</u>	08/23/11 16:14	08/22/11 18:56 08/22/11 18:56 Analyzed 09/02/11 06:20	Dil F
Ethylene Methane Method: 6010B - Metals (ICP) - Tot Analyte ron Manganese General Chemistry Analyte	1.0 3600 ral Recoverab Result 5.6 0.37	ile	1.0 0.58 RL 0.050 0.010	MDL MDL	ug/L Unit mg/L mg/L Unit	<u>D</u>	08/23/11 16:14	08/22/11 18:56 08/22/11 18:56 Analyzed 09/02/11 06:20 09/02/11 06:20	
Ethylene Methane Method: 6010B - Metals (ICP) - Tot Analyte ron Manganese General Chemistry Analyte Chloride	1.0 3600 al Recoverab Result 5.6 0.37	ole Qualifier Qualifier	1.0 0.58 RL 0.050 0.010		ug/L Unit mg/L mg/L Unit mg/L		08/23/11 16:14 08/23/11 16:14	08/22/11 18:56 08/22/11 18:56 Analyzed 09/02/11 06:20 09/02/11 06:20 Analyzed 08/25/11 15:32	
Ethylene Methane Method: 6010B - Metals (ICP) - Tot Analyte ron Manganese General Chemistry Analyte Chloride Nitrate as N	1.0 3600 ral Recoverab Result 5.6 0.37 Result 65 0.050	Qualifier Qualifier	1.0 0.58 RL 0.050 0.010 RL 1.0 0.050		ug/L Unit mg/L mg/L Unit mg/L mg/L mg/L		08/23/11 16:14 08/23/11 16:14	08/22/11 18:56 08/22/11 18:56 Analyzed 09/02/11 06:20 09/02/11 06:20 Analyzed 08/25/11 15:32 08/16/11 17:34	
Ethylene Methane Method: 6010B - Metals (ICP) - Tot Analyte ron Manganese General Chemistry Analyte Chloride Nitrate as N Sulfate	1.0 3600 sal Recoverab Result 5.6 0.37 Result 65 0.050 5.0	ole Qualifier Qualifier	1.0 0.58 RL 0.050 0.010 RL 1.0 0.050 5.0		ug/L Unit mg/L mg/L Unit mg/L mg/L mg/L mg/L		08/23/11 16:14 08/23/11 16:14	08/22/11 18:56 08/22/11 18:56 Analyzed 09/02/11 06:20 09/02/11 06:20 Analyzed 08/25/11 15:32 08/16/11 17:34 08/25/11 16:05	
Ethylene Methane Method: 6010B - Metals (ICP) - Tot Analyte ron Manganese General Chemistry Analyte Chloride Witrate as N Sulfate Fotal Organic Carbon	1.0 3600 al Recoverab Result 5.6 0.37 Result 65 0.050 5.0	Qualifier Qualifier U U	RL 0.050 0.010 RL 1.0 0.050 5.0 1.0	MDL	Unit mg/L mg/L Unit mg/L mg/L mg/L mg/L mg/L	D	08/23/11 16:14 08/23/11 16:14 Prepared	08/22/11 18:56 08/22/11 18:56 Analyzed 09/02/11 06:20 09/02/11 06:20 Analyzed 08/25/11 15:32 08/16/11 17:34 08/25/11 16:05 08/30/11 17:44	Dil F
Ethylene Methane Method: 6010B - Metals (ICP) - Tot Analyte ron Manganese General Chemistry Analyte Chloride Nitrate as N Sulfate	1.0 3600 al Recoverab Result 5.6 0.37 Result 65 0.050 5.0	Qualifier Qualifier	1.0 0.58 RL 0.050 0.010 RL 1.0 0.050 5.0	MDL	ug/L Unit mg/L mg/L Unit mg/L mg/L mg/L mg/L		08/23/11 16:14 08/23/11 16:14	08/22/11 18:56 08/22/11 18:56 Analyzed 09/02/11 06:20 09/02/11 06:20 Analyzed 08/25/11 15:32 08/16/11 17:34 08/25/11 16:05	Dil Fa

TestAmerica Savannah

Page 15 of 77

Client: Solutia Inc.

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Client Sample ID: CPA-MW-2D-F(0.2)-0811

Date Collected: 08/15/11 13:55 Date Received: 08/16/11 09:25 Lab Sample ID: 680-71407-4

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	5.7		0.050		mg/L		08/23/11 16:14	09/02/11 06:25	1
Manganese, Dissolved	0.38		0.010		mg/L		08/23/11 16:14	09/02/11 06:25	1
General Chemistry - Dissolved				SACI					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	12		1.0		mg/L			08/23/11 08:18	1

SER 22 2011

EPA ARCHIVE DOCUMENT

Client Sample Results

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Client Sample ID: CPA-MW-2D--0811-AD

Method: 8260B - Volatile Organic Compounds (GC/MS)

Date Collected: 08/15/11 13:55 Date Received: 08/16/11 09:25

Lab Sample ID: 680-71407-5

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	200	U	200		ug/L			08/23/11 18:30	200
Chlorobenzene	12000		200		ug/L			08/23/11 18:30	200
1,2-Dichlorobenzene	200	U	200		ug/L			08/23/11 18:30	200
1,3-Dichlorobenzene	200	U_	200		ug/L			08/23/11 18:30	200
1,4-Dichlorobenzene	1300	J	200		ug/L			08/23/11 18:30	200
Surrogate	% Recovery	Qualifier	Limits			28	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	102	-	70 - 130					08/23/11 18:30	200
Dibromofluoromethane	96		70 - 130					08/23/11 18:30	200
Toluene-d8 (Surr)	98	a a a	70 - 130	i Transact		8		08/23/11 18:30	200
Method: 8270C - Semivolatile Org	janic Compou	nds (GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Chlorophenol	22		9.8		ug/L		08/19/11 14:58	08/23/11 17:49	1
1.2.4-Trichlorobenzene	9.8	U	9.8		ua/l		08/19/11 14:58	08/23/11 17:49	1

ı	2-Chiorophenoi	22		9.0	ug/L	06/19/11 14.56	00/23/11 17.49	1
	1,2,4-Trichlorobenzene	9.8	U	9.8	ug/L	08/19/11 14:58	08/23/11 17:49	1
	Surrogate	% Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
	Phenol-d5	66		25 - 130		08/19/11 14:58	08/23/11 17:49	1
	2-Fluorophenol	72		25 - 130		08/19/11 14:58	08/23/11 17:49	1
	2,4,6-Tribromophenol	82		31 - 141		08/19/11 14:58	08/23/11 17:49	1
	Nitrobenzene-d5	68		39 - 130		08/19/11 14:58	08/23/11 17:49	1
ĺ	2-Fluorobiphenyl	70		38 - 130		08/19/11 14:58	08/23/11 17:49	1
	Terphenyl-d14	39		10 - 143		08/19/11 14:58	08/23/11 17:49	1
L								

SEP 2 2 2011

Client Sample ID: CPA-MW-1D-0811

Date Collected: 08/15/11 15:35 Date Received: 08/16/11 09:25

Lab Sample ID: 680-71407-6

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	6700	J	200		ug/L		R	08/22/11 17:55	20
Chlorobenzene	19000	Ť	200		ug/L			08/22/11 17:55	20
,2-Dichlorobenzene	26000	チ	200		ug/L			08/22/11 17:55	20
,3-Dichlorobenzene	2300	子	200		ug/L			08/22/11 17:55	20
1,4-Dichlorobenzene	17000	ナ	200		ug/L			08/22/11 17:55	20
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
-Bromofluorobenzene	105		70 - 130					08/22/11 17:55	20
hibromofluoromethane	96		70 - 130					08/22/11 17:55	20
oluene-d8 (Surr)	98		70 - 130	(F (F)	9 80	16,000 (6	(MAC) MICH. FROM	08/22/11 17:55	20
Method: 8270C - Semivolatile Orga	nic Compou	nds (GC/MS)							
nalyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
-Chlorophenol	48	U	48		ug/L		08/19/11 14:58	08/23/11 18:16	
,2,4-Trichlorobenzene	910		48		ug/L		08/19/11 14:58	08/23/11 18:16	
urrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Phenol-d5	54		25 - 130				08/19/11 14:58	08/23/11 18:16	
-Fluorophenol	66		25 - 130				08/19/11 14:58	08/23/11 18:16	
,4,6-Tribromophenol	67		31 - 141				08/19/11 14:58	08/23/11 18:16	
litrobenzene-d5	64		39 - 130				08/19/11 14:58	08/23/11 18:16	
?-Fluorobiphenyl	64		38 - 130				08/19/11 14:58	08/23/11 18:16	
erphenyl-d14	16		10 - 143				08/19/11 14:58	08/23/11 18:16	
Method: RSK-175 - Dissolved Gase	s (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
thane	36		1.1		ug/L			08/22/11 19:09	
thylene	1.0	U	1.0		ug/L			08/22/11 19:09	
Methane	13000		0.58		ug/L			08/22/11 19:09	
Method: 6010B - Metals (ICP) - Tota	l Recoverab	le							
nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
on	2.7		0.050		mg/L		08/23/11 16:14	09/02/11 06:41	
flanganese	0.23		0.010		mg/L		08/23/11 16:14	09/02/11 06:41	
General Chemistry									
nalyte	12.000.00.000	Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
hloride	140		2.0		mg/L			08/25/11 15:38	
itrate as N	0.50	U	0.50		mg/L			08/16/11 17:38	1
ulfate	15		5.0		mg/L			08/25/11 16:06	
otal Organic Carbon	25		10		mg/L			08/30/11 17:58	1
Analyte	Result	Qualifier	5.0	RL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
Alkalinity	1000		5.0		mg/L			08/16/11 15:58	

08/16/11 15:58

TestAmerica Savannah

Page 18 of 77

5.0

mg/L

5.0 U

Carbon Dioxide, Free

Client: Solutia Inc.

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Client Sample ID: CPA-MW-1D-F(0.2)-0811

Date Collected: 08/15/11 15:35 Date Received: 08/16/11 09:25 Lab Sample ID: 680-71407-7

Matrix: Water

Method: 6010B - Metals (ICP) - Diss	olved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	1.6		0.050		mg/L		08/23/11 16:14	09/02/11 06:46	1
Manganese, Dissolved	0.13		0.010		mg/L		08/23/11 16:14	09/02/11 06:46	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	57		25	-	mg/L			08/23/11 08:18	25

SEP 2 2 2011

Client: Solutia Inc.

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Client Sample ID: TB-1 Lab Sample ID: 680-71407-8

Matrix: Water

Date Collected:	08/15/11	00:00
Date Received:	08/16/11	09:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0		ug/L			08/22/11 13:50	1
Chlorobenzene	1.0	U	1.0		ug/L			08/22/11 13:50	1
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			08/22/11 13:50	1
1,3-Dichlorobenzene	1.0	U	1.0		ug/L			08/22/11 13:50	1
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			08/22/11 13:50	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	98		70 - 130					08/22/11 13:50	1
Dibromofluoromethane	105		70 - 130					08/22/11 13:50	1
Toluene-d8 (Surr)	97	¥	70 - 130	2 2	0 0		10 10	08/22/11 13:50	1

SEP 22 2011

Client: Solutia Inc.

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Client Sample ID: BSA-MW-2D-0811

Method: 8260B - Volatile Organic Compounds (GC/MS)

Date Collected: 08/16/11 09:20 Date Received: 08/17/11 09:19 Lab Sample ID: 680-71445-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	220000	T	2000		ug/L		·	08/25/11 17:15	2000
Chlorobenzene	2000	UIXI	2000		ug/L			08/25/11 17:15	2000
1,2-Dichlorobenzene	2000	UUJ	2000		ug/L			08/25/11 17:15	2000
1,3-Dichlorobenzene	2000	u UJ	2000		ug/L			08/25/11 17:15	2000
1,4-Dichlorobenzene	2000	u UJ	2000		ug/L			08/25/11 17:15	2000
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	104		70 - 130					08/25/11 17:15	2000
Dibromofluoromethane	100		70 - 130					08/25/11 17:15	2000
Toluene-d8 (Surr)	102	n (2) 2 3 2	70 - 130	2				08/25/11 17:15	2000
Method: 8270C - Semivolatile Organ	nic Compou	inds (GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	9.5	U	9.5		ug/L		08/19/11 14:58	08/22/11 15:57	1
1,4-Dioxane	36		9.5		ug/L		08/19/11 14:58	08/22/11 15:57	1
2-Chlorophenol	9.5	U	9.5		ug/L		08/19/11 14:58	08/22/11 15:57	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Phenol-d5	66		25 - 130				08/19/11 14:58	08/22/11 15:57	1
2,4,6-Tribromophenol	90		31 - 141				08/19/11 14:58	08/22/11 15:57	1
2-Fluorobiphenyl	69		38 - 130				08/19/11 14:58	08/22/11 15:57	1
2-Fluorophenol	63		25 - 130	2.0	127	9 55	08/19/11 14:58	08/22/11 15:57	1
Nitrobenzene-d5	71		39 - 130				08/19/11 14:58	08/22/11 15:57	1
Terphenyl-d14	58		10 - 143				08/19/11 14:58	08/22/11 15:57	1
Method: RSK-175 - Dissolved Gase	s (GC)					6			
Analyte	. ,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	11	-	1.1		ug/L			08/22/11 17:52	1
Ethylene	1.0	U	1.0		ug/L			08/22/11 17:52	1
Methane	7100		0.58		ug/L			08/22/11 17:52	1
Method: 6010B - Metals (ICP) - Tota	l Recoverab	ole							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	4.9		0.050		mg/L		08/23/11 16:14	09/02/11 06:51	1
Manganese	0.66		0.010		mg/L		08/23/11 16:14	09/02/11 06:51	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	110		2.0		mg/L			08/25/11 15:38	2
Nitrate as N	0.050	U	0.050		mg/L			08/17/11 15:04	1
Sulfate	5.0	U	5.0		mg/L			08/25/11 16:06	1
Total Organic Carbon	6.0		1.0		mg/L			08/25/11 11:17	1
Analyte	Result	Qualifier	RL _	RL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity					Name of the last o				
	650		5.0		mg/L			08/17/11 17:40	1

SEP 22 2011

Client: Solutia Inc.

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Client Sample ID: BSA-MW-2D-F(0.2)-0811

Date Collected: 08/16/11 09:20 Date Received: 08/17/11 09:19 Lab Sample ID: 680-71445-2

Matrix: Water

Method: 6010B - Metals (ICP) - Diss	olved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	4.8		0.050		mg/L		08/23/11 16:14	09/02/11 06:56	1
Manganese, Dissolved	0.66		0.010		mg/L		08/23/11 16:14	09/02/11 06:56	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	6.1		1.0		mg/L			08/23/11 08:18	1

SEP. 22 2011

Client: Solutia Inc.

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Client Sample ID: CPA-MW-3D-0811 Lab Sample ID: 680-71445-3

Date Collected: 08/16/11 10:50 Date Received: 08/17/11 09:19

Matrix: Water

Method: 8260B - Volatile Org	ganic Compounds	(GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	40		5.0		ug/L			08/25/11 17:44	5
Chlorobenzene	460		5.0		ug/L			08/25/11 17:44	5
1,2-Dichlorobenzene	5.0	U	5.0		ug/L			08/25/11 17:44	5
1,3-Dichlorobenzene	5.0	U	5.0		ug/L			08/25/11 17:44	5
1,4-Dichlorobenzene	5.0	U	5.0		ug/L			08/25/11 17:44	5
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	104	Y	70 - 130					08/25/11 17:44	5
Dibromofluoromethane	98		70 - 130					08/25/11 17:44	5
Toluene-d8 (Surr)	103		70 - 130	2 0	V. 194	West		08/25/11 17:44	
– Method: 8270C - Semivolatile	e Organic Compou	inds (GC/M	S)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Chloroaniline	19	U	19	590	ug/L		08/19/11 14:58	08/22/11 16:25	1
2-Chlorophenol	9.5	U .	9.5		ug/L		08/19/11 14:58	08/22/11 16:25	1
1,2,4-Trichlorobenzene	9.5	U	9.5		ug/L		08/19/11 14:58	08/22/11 16:25	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Phenol-d5	66		25 - 130				08/19/11 14:58	08/22/11 16:25	1
2-Fluorophenol	63		25 - 130				08/19/11 14:58	08/22/11 16:25	1
2,4,6-Tribromophenol	91		31 - 141				08/19/11 14:58	08/22/11 16:25	1
Nitrobenzene-d5	73		39 - 130				08/19/11 14:58	08/22/11 16:25	1
2-Fluorobiphenyl	73		38 - 130				08/19/11 14:58	08/22/11 16:25	1
Terphenyl-d14	67		10 - 143				08/19/11 14:58	08/22/11 16:25	1
Method: RSK-175 - Dissolved	d Gases (GC)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	5.2		1.1		ug/L			08/22/11 18:05	1
Ethylene	1.0	U	1.0		ug/L			08/22/11 18:05	1
Methane	1500		0.58		ug/L			08/22/11 18:05	1
Method: 6010B - Metals (ICP)) - Total Recoverat	ole							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	10		0.050		mg/L		08/23/11 16:14	09/02/11 07:02	1
Manganese	0.56		0.010		mg/L		08/23/11 16:14	09/02/11 07:02	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	110		2.0		mg/L			08/25/11 15:38	2
Nitrate as N	0.050	U	0.050		mg/L			08/17/11 15:07	1
Sulfate	5.0	U	5.0		mg/L			08/25/11 16:07	1
Total Organic Carbon	10	* # #	1.0		mg/L		Principle (Euro)	08/25/11 11:34	1
Analyte		Qualifier	RL	RL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Alkalinity	560		5.0		mg/L			08/17/11 17:48	1
Carbon Dioxide, Free	31		5.0		mg/L			08/17/11 17:48	1

SEP 2 2 2011 MAM

TestAmerica Savannah

Client: Solutia Inc.

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Client Sample ID: CPA-MW-3D-F(0.2)-0811

Date Collected: 08/16/11 10:50 Date Received: 08/17/11 09:19 Lab Sample ID: 680-71445-4

Matrix: Water

Method: 6010B - Metals (ICP) - Diss	olved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	10		0.050		mg/L		08/23/11 16:14	09/02/11 07:07	1
Manganese, Dissolved	0.57		0.010		mg/L		08/23/11 16:14	09/02/11 07:07	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	9.9		1.0		mg/L		×	08/23/11 08:18	1

SEP 22 2011 MM

Client: Solutia Inc.

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Client Sample ID: CPA-MW-5D-0811

Date Collected: 08/16/11 13:05 Date Received: 08/17/11 09:19 Lab Sample ID: 680-71445-5

Matrix: Water

Method: 8260B - Volatile Or	ganic Compounds	(GC/MS)							
Analyte	2010000000	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	20	U	20		ug/L			08/25/11 18:13	20
Chlorobenzene	1200		20		ug/L			08/25/11 18:13	20
1,2-Dichlorobenzene	20	U	20		ug/L			08/25/11 18:13	20
1,3-Dichlorobenzene	20	U	20		ug/L	4		08/25/11 18:13	20
1,4-Dichlorobenzene	20	U	20		ug/L			08/25/11 18:13	20
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	106		70 - 130					08/25/11 18:13	20
Dibromofluoromethane	99		70 - 130					08/25/11 18:13	20
Toluene-d8 (Surr)	1.02	ne ossanas ass	70 - 130		9	* * *	€ =	08/25/11 18:13	. 20
Method: 8270C - Semivolati	le Organic Compou	nds (GC/MS	5)						
Analyte		Qualifier	RL _	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Chloroaniline	19	U	19		ug/L		08/19/11 14:58	08/22/11 16:53	1
2-Chlorophenol	11		9.5		ug/L		08/19/11 14:58	08/22/11 16:53	1
1,2,4-Trichlorobenzene	9.5	U	9.5		ug/L	2	08/19/11 14:58	08/22/11 16:53	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Phenol-d5	61		25 - 130				08/19/11 14:58	08/22/11 16:53	1
2-Fluorophenol	61		25 - 130				08/19/11 14:58	08/22/11 16:53	1
2,4,6-Tribromophenol	93		31 - 141				08/19/11 14:58	08/22/11 16:53	1
Nitrobenzene-d5	78		39 _ 130				08/19/11 14:58	08/22/11 16:53	1
2-Fluorobiphenyl	78		38 - 130				08/19/11 14:58	08/22/11 16:53	1
Terphenyl-d14	. 75		10 - 143				08/19/11 14:58	08/22/11 16:53	1
Method: RSK-175 - Dissolve	ed Gases (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	1.1	U	1.1		ug/L			08/22/11 18:17	1
Ethylene	1.0	U	1.0		ug/L			08/22/11 18:17	1
Methane	10		0.58		ug/L			08/22/11 18:17	1
Method: 6010B - Metals (ICF) - Total Recoverab	le							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	82		0.050		mg/L		08/23/11 16:14	09/02/11 07:12	1
Manganese	2.4		0.010		mg/L		08/23/11 16:14	09/02/11 07:12	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	. 310		5.0		mg/L			08/25/11 15:38	5
Nitrate as N	0.050	U	0.050		mg/L			08/17/11 15:09	1
Sulfate	1500		250		mg/L			08/25/11 16:49	50
Total Organic Carbon	3.9		1.0		mg/L			08/25/11 11:53	1
Analyte		Qualifier	RL	RL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Alkalinity	380		5.0		mg/L			08/17/11 17:56	1
Carbon Dioxide, Free	96		5.0		mg/L			08/17/11 17:56	1

SEP 22 2011

TestAmerica Savannah

Client: Solutia Inc.

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Client Sample ID: CPA-MW-5D-F(0.2)-0811

Date Collected: 08/16/11 13:05 Date Received: 08/17/11 09:19 Lab Sample ID: 680-71445-6

Matrix: Water

Method: 6010B - Metals (ICP) - Diss Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	84		0.050		mg/L		08/23/11 16:14	09/02/11 07:17	1
Manganese, Dissolved	2.5		0.010		mg/L		08/23/11 16:14	09/02/11 07:17	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	4.0	-	1.0		mg/L			08/23/11 08:18	1

SEP 2 2 2011

Client: Solutia Inc.

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Client Sample ID: BSA-MW-3D-0811 Lab Sample ID: 680-71445-7

Date Collected: 08/16/11 14:55 Date Received: 08/17/11 09:19

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Benzene	52		10		ug/L			08/25/11 17:58	-
Chlorobenzene	1500		10		ug/L			08/25/11 17:58	
,2-Dichlorobenzene	24		10		ug/L			08/25/11 17:58	
,3-Dichlorobenzene	22		10		ug/L			08/25/11 17:58	
,4-Dichlorobenzene	520		10		ug/L			08/25/11 17:58	
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
l-Bromofluorobenzene	113		70 - 130					08/25/11 17:58	
Dibromofluoromethane	99		70 - 130					08/25/11 17:58	
Coluene-d8 (Surr)	102	Complete of	70 - 130	6 F 8 6	(XX) MIG. (XX)		501 90	08/25/11 17:58	,
Method: 8270C - Semivolatile Or	1-m	7.					*		
Analyte	20 No	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil F
,2,4-Trichlorobenzene	9.6	m	9.6		ug/L 		08/19/11 14:58	08/22/11 17:22	
,4-Dioxane		U	9.6		ug/L		08/19/11 14:58	08/22/11 17:22	
-Chlorophenol	12		9.6		ug/L		08/19/11 14:58	08/22/11 17:22	
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil I
Phenol-d5	59		25 - 130				08/19/11 14:58	08/22/11 17:22	
2,4,6-Tribromophenol	85		31 - 141				08/19/11 14:58	08/22/11 17:22	
?-Fluorobiphenyl	66		38 - 130				08/19/11 14:58	08/22/11 17:22	
?-Fluorophenol	58		25 - 130				08/19/11 14:58	08/22/11 17:22	
litrobenzene-d5	66		39 - 130				08/19/11 14:58	08/22/11 17:22	
erphenyl-d14	65		10 - 143				08/19/11 14:58	08/22/11 17:22	
flethod: RSK-175 - Dissolved Ga			10.1992	1700-20					
nalyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
thane	1.4		1.1		ug/L			08/22/11 18:30	
thylene	1.2		1.0		ug/L			08/22/11 18:30	
flethane	190		0.58		ug/L			08/22/11 18:30	
Method: 6010B - Metals (ICP) - T			-	MBI		_			
nalyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
on -	11		0.050		mg/L		08/23/11 16:16	09/02/11 07:22	
langanese	0.56		0.010		mg/L		08/23/11 16:16	09/02/11 07:22	
General Chemistry				1451		-			
	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed 08/25/11 15:32	Dil F
<u> - 1 </u>			1.0		mg/L mg/L				
hloride		11	0.050					00/47/44 45.40	
hloride litrate as N	0.050	U	0.050					08/17/11 15:10	
hloride litrate as N sulfate	0.050 230	U	50		mg/L			08/25/11 16:49	Mata is
hloride litrate as N sulfate otal Organic Carbon	0.050 230 4.8		50 1.0		mg/L mg/L	127	a as as s	08/25/11 16:49 08/25/11 12:07	Make to
hloride litrate as N culfate	0.050 230		50	RL	mg/L	<u>D</u>	Prepared	08/25/11 16:49	Dil F

SEP 22 2011

TestAmerica Savannah

Page 27 of 77

Lab Sample ID: 680-71445-8

Matrix: Water

Client Sample ID: BSA-MW-3D-F(0.2)-0811

Date Collected: 08/16/11 14:55 Date Received: 08/17/11 09:19

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	11	-	0.050		mg/L		08/23/11 16:16	09/02/11 07:28	
Manganese, Dissolved	0.55		0.010		mg/L		08/23/11 16:16	09/02/11 07:28	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	4.9		1.0		mg/L			08/23/11 08:18	-

8

SEP 22 2011

TestAmerica Savannah

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Client Sample ID: BSA-MW-3D-0811-EB

Date Collected: 08/16/11 16:05 Date Received: 08/17/11 09:19 Lab Sample ID: 680-71445-9

Matrix: Water

Method: 8260B - Volatile (Organic Compounds	(GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	(1.5) 	1.0		ug/L			08/26/11 18:33	1
Chlorobenzene	1.0	U	1.0		ug/L			08/26/11 18:33	1
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			08/26/11 18:33	1
1,3-Dichlorobenzene	1.0	U	1.0		ug/L			08/26/11 18:33	1
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			08/26/11 18:33	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	110		70 - 130					08/26/11 18:33	1
Dibromofluoromethane	104		70 - 130					08/26/11 18:33	1
Toluene-d8 (Surr)	102		70 - 130	250	21		And the state of	08/26/11 18:33	. 1
Method: 8270C - Semivola Analyte	Result	Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
				MDL		<u>D</u>			Dil Fac
1,2,4-Trichlorobenzene	9.7		9.7		ug/L		08/19/11 14:58	08/22/11 17:50	1.
1,4-Dioxane	9.7		9.7		ug/L		08/19/11 14:58	08/22/11 17:50	1
2-Chlorophenol	9.7	U	9.7		ug/L	X	08/19/11 14:58	08/22/11 17:50	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Phenol-d5	67		25 - 130				08/19/11 14:58	08/22/11 17:50	
2,4,6-Tribromophenol	88		31 - 141				08/19/11 14:58	08/22/11 17:50	1
2-Fluorobiphenyl	75		38 - 130				08/19/11 14:58	08/22/11 17:50	1
2-Fluorophenol	67		25 _ 130				08/19/11 14:58	08/22/11 17:50	1
Nitrobenzene-d5	75		39 - 130				08/19/11 14:58	08/22/11 17:50	1
Terphenyl-d14	73		10 - 143				08/19/11 14:58	08/22/11 17:50	1

SEP 22 2011

Client: Solutia Inc.

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065


Lab Sample ID: 680-71445-10 Client Sample ID: TB-2

Date Collected: 08/16/11 00:00 Matrix: Water

Date Received: 08/17/11 09:19

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0		ug/L		=	08/26/11 17:06	1
Chlorobenzene	1.0	U	1.0		ug/L			08/26/11 17:06	1
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			08/26/11 17:06	1
1,3-Dichlorobenzene	1.0	U	1.0		ug/L			08/26/11 17:06	1
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			08/26/11 17:06	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	108		70 - 130			-		08/26/11 17:06	1
Dibromofluoromethane	104		70 - 130					08/26/11 17:06	1
Toluene-d8 (Surr)	102		70 - 130					08/26/11 17:06	.1

Client: Solutia Inc.

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Client Sample ID: BSA-MW-4D-0811 Lab Sample ID: 680-71493-1

Date Collected: 08/17/11 09:50 Date Received: 08/18/11 09:37

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	28		20	0 0	ug/L			08/28/11 17:07	2
Chlorobenzene	2600		20		ug/L			08/28/11 17:07	2
,2-Dichlorobenzene	20	U	20		ug/L			08/28/11 17:07	2
1,3-Dichlorobenzene	32		20		ug/L			08/28/11 17:07	2
,4-Dichlorobenzene	34		20		ug/L			08/28/11 17:07	2
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
-Bromofluorobenzene	86		70 - 130					08/28/11 17:07	2
Dibromofluoromethane	96		70 - 130					08/28/11 17:07	2
Coluene-d8 (Surr)	87		70 - 130			B	. ¥ \$ 5	_08/28/11 17:07	. 2
Method: 8270C - Semivolatile Orga	ınic Compou	nds (GC/MS))						
analyte		Qualifier	RL	MDL	3000	D	Prepared	Analyzed	Dil Fa
,2,4-Trichlorobenzene	9.6	U	9.6		ug/L		08/19/11 14:58	08/23/11 18:43	
,4-Dioxane	32		9.6		ug/L		08/19/11 14:58	08/23/11 18:43	
-Chlorophenol	17		9.6		ug/L		08/19/11 14:58	08/23/11 18:43	
urrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
henol-d5	74		25 - 130				08/19/11 14:58	08/23/11 18:43	
,4,6-Tribromophenol	78		31 - 141				08/19/11 14:58	08/23/11 18:43	
-Fluorobiphenyl	70		38 - 130				08/19/11 14:58	08/23/11 18:43	
?-Fluorophenol	76		25 - 130				08/19/11 14:58	08/23/11 18:43	
Nitrobenzene-d5	69		39 - 130				08/19/11 14:58	08/23/11 18:43	
Ferphenyl-d14	24		10 - 143				08/19/11 14:58	08/23/11 18:43	
Method: RSK-175 - Dissolved Gase	es (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
thane	3.7		1.1		ug/L			08/22/11 19:21	
Ethylene	1.0	U	1.0		ug/L			08/22/11 19:21	
Methane	150		0.58		ug/L			08/22/11 19:21	
Method: 6010B - Metals (ICP) - Tota									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
ron	8.5		0.050		mg/L		08/23/11 16:16	09/02/11 07:43	
Manganese	0.64		0.010		mg/L		08/23/11 16:16	09/02/11 07:43	
General Chemistry									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	150		2.0		mg/L			08/25/11 15:38	
litrate as N	0.050	U	0.050		mg/L			08/18/11 15:44	
ulfate	66		25		mg/L			08/25/11 16:44	
otal Organic Carbon	6.4	95 9595950	1.0		mg/L			08/30/11 18:13	
Analyte		Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
Alkalinity	640		5.0		mg/L			08/18/11 20:45	

SEP 22 2011 MM

Client: Solutia Inc.

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Client Sample ID: BSA-MW-4D-F(0.2)-0811

Date Collected: 08/17/11 09:50 Date Received: 08/18/11 09:37 Lab Sample ID: 680-71493-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	8.7		0.050	-	mg/L		08/23/11 16:16	09/02/11 07:49	-
Manganese, Dissolved	0.66		0.010		mg/L		08/23/11 16:16	09/02/11 07:49	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	6.1		1.0		mg/L			08/23/11 08:18	1

SEP 22 2011

Client: Solutia Inc.

Alkalinity

Carbon Dioxide, Free

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Client Sample ID: CPA-MW-4D-0811 Lab Sample ID: 680-71493-3

Date Collected: 08/17/11 11:05 Date Received: 08/18/11 09:37 Matrix: Water

Analyte	Result	Qualifier	RL	MDL (Unit	D	Prepared	Analyzed	Dil Fac
Benzene	50	$\overline{\sigma}$	2.0	i	ug/L			08/30/11 14:31	2
Chlorobenzene	390	Ť	2.0	i	ug/L			08/30/11 14:31	2
1,2-Dichlorobenzene	2.0	UUJ	2.0	ι	ug/L			08/30/11 14:31	2
1,3-Dichlorobenzene	2.0	u WJ	2.0	ı	ug/L			08/30/11 14:31	2
1,4-Dichlorobenzene	2.0	u WJ	2.0	Ü	ug/L			08/30/11 14:31	2

Surrogate	% Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	88	597	70 - 130	_		08/30/11 14:31	2
Dibromofluoromethane	100		70 - 130			08/30/11 14:31	2
Toluene-d8 (Surr)	90		.70 - 130	ST interioral rest of later		08/30/11 14:31	2

Dibromofluoromethane	100		70 - 130					08/30/11 14:31	2
Toluene-d8 (Surr)	90		70 - 130					08/30/11 14:31	. 2
Method: 8270C - Semivolatile Analyte	100	INds (GC/M Qualifier	S) RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
4-Chloroaniline	140	Qualifier	38	WIDE	ug/L		08/19/11 14:58	08/23/11 19:09	
2-Chlorophenol	2.5	U	19		ug/L		08/19/11 14:58	08/23/11 19:09	2
1,2,4-Trichlorobenzene		U	19		ug/L		08/19/11 14:58	08/23/11 19:09	2
1,2,4- Michiologenzene	19	U	19		ug/L		00/19/11 14.50	00/23/11 19:09	2
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Phenol-d5	47	-	25 - 130				08/19/11 14:58	08/23/11 19:09	2
2-Fluorophenol	52		25 _ 130				08/19/11 14:58	08/23/11 19:09	2
2,4,6-Tribromophenol	59		31 - 141				08/19/11 14:58	08/23/11 19:09	2
Nitrobenzene-d5	49		39 - 130				08/19/11 14:58	08/23/11 19:09	2
2-Fluorobiphenyl	55		38 _ 130				08/19/11 14:58	08/23/11 19:09	2
Terphenyl-d14	23		10 - 143				08/19/11 14:58	08/23/11 19:09	2
Analyte Ethane	Result 16	Qualifier	1.1 — RL	MDL	Unit ug/L	D	Prepared	Analyzed 08/22/11 19:34	Dil Fac
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Ethylene	1.0	U	1.0		ug/L			08/22/11 19:34	1
Methane	8700		0.58		ug/L			08/22/11 19:34	1
Method: 6010B - Metals (ICP)	- Total Recoverat	ole							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	11	:/ <u></u>	0.050		mg/L		08/23/11 16:16	09/02/11 07:54	1
Manganese	0.24		0.010		mg/L		08/23/11 16:16	09/02/11 07:54	1
O									
General Chemistry	Devile	0 1151	RL	MDL	11-14		Danasad	Analogad	Dile
Analyte		Qualifier	5.0	IVIDE		<u>D</u>	Prepared	Analyzed 08/25/11 15:44	Dil Fac
Chloride	300 0.050	11			mg/L			08/18/11 15:44	
Nitrate as N			0.050		mg/L				1
Sulfate	5.0	U	5.0		mg/L		Strate at the	08/25/11 16:17	1
Total Organic Carbon	5.9		1.0		mg/L			08/30/11 18:29	1
Analyte	Decul	Qualifier	RL	DI	Unit	D	Prepared	Analyzed	Dil Fac

SEP 22 2011

08/18/11 20:57

08/18/11 20:57

TestAmerica Savannah

Page 33 of 77

5.0

5.0

760

51

mg/L

mg/L

Client: Solutia Inc.

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Client Sample ID: CPA-MW-4D-F(0.2)-0811

Date Collected: 08/17/11 11:05 Date Received: 08/18/11 09:37 Lab Sample ID: 680-71493-4

Matrix: Water

Method: 6010B - Metals (ICP) - Disso	lved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	11		0.050		mg/L		08/23/11 16:16	09/02/11 07:59	1
Manganese, Dissolved	0.24		0.010		mg/L		08/23/11 16:16	09/02/11 07:59	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	6.3		1.0		mg/L			08/23/11 08:18	1

CD 2 2 2011

TestAmerica Savannah

Client: Solutia Inc.

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Client Sample ID: BSA-MW-5D-0811

Date Collected: 08/17/11 13:10 Date Received: 08/18/11 09:37 Lab Sample ID: 680-71493-5

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	10	U	10	-	ug/L			08/30/11 15:36	1
Chlorobenzene	590		10		ug/L			08/30/11 15:36	1
1,2-Dichlorobenzene	10	U	10		ug/L			08/30/11 15:36	1
1,3-Dichlorobenzene	10	U	10		ug/L			08/30/11 15:36	1
1,4-Dichlorobenzene	10	U	10		ug/L			08/30/11 15:36	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene	87		70 - 130					08/30/11 15:36	1
Dibromofluoromethane	92		70 - 130					08/30/11 15:36	1
Toluene-d8 (Surr)	94	ecc s	70 - 130	ii iin				08/30/11 15:36	. 1
Method: 8270C - Semivolatile O	rganic Compou	nds (GC/MS	5)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,2,4-Trichlorobenzene	9.5	U	9.5	_	ug/L		08/19/11 14:58	08/23/11 19:36	
1,4-Dioxane	9.5	U	9.5		ug/L		08/19/11 14:58	08/23/11 19:36	
2-Chlorophenol	9.5	U	9.5		ug/L		08/19/11 14:58	08/23/11 19:36	
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Phenol-d5	50	N	25 - 130				08/19/11 14:58	08/23/11 19:36	
2,4,6-Tribromophenol	62		31 - 141				08/19/11 14:58	08/23/11 19:36	
2-Fluorobiphenyl	53		38 - 130		8		08/19/11 14:58	08/23/11 19:36	
2-Fluorophenol	57		25 - 130				08/19/11 14:58	08/23/11 19:36	
Nitrobenzene-d5	55		39 - 130				08/19/11 14:58	08/23/11 19:36	
Terphenyl-d14	24		10 - 143				08/19/11 14:58	08/23/11 19:36	
Method: RSK-175 - Dissolved G	ases (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Ethane	10		1.1		ug/L			08/22/11 19:47	
Ethylene	1.0	U	1.0		ug/L		٠	08/22/11 19:47	
Methane	54		0.58		ug/L			08/22/11 19:47	
Method: 6010B - Metals (ICP) -	Total Recoverab	ole							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Iron	15		0.050		mg/L		08/23/11 16:16	09/02/11 08:04	
Manganese	0.55		0.010		mg/L		08/23/11 16:16	09/02/11 08:04	9
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	250	5 1894 19955900	5.0		mg/L	<u> </u>		08/25/11 15:44	ri die
Nitrate as N	0.050	U	0.050		mg/L			08/18/11 15:46	
Gulfate	380		100		mg/L			08/25/11 16:52	2
Total Organic Carbon	5.0	seyyey	1.0	(41)	mg/L			08/30/11 18:46	* * * * * * * * * * * * * * * * * * *
Analyte	Result	Qualifier	RL _	RL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
A 11 - 12 - 14 -			E 0					00/40/44 04:07	

SEP 22 2011

08/18/11 21:07

08/18/11 21:07

TestAmerica Savannah

Page 35 of 77

5.0

5.0

mg/L

mg/L

700

51

Alkalinity

Carbon Dioxide, Free

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Client Sample ID: BSA-MW-5D-F(0.2)-0811

Date Collected: 08/17/11 13:10 Date Received: 08/18/11 09:37 Lab Sample ID: 680-71493-6

Matrix: Water

Method: 6010B - Metals (ICP) - Diss	olved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	12		0.050		mg/L		08/23/11 16:16	09/02/11 08:10	1
Manganese, Dissolved	0.58		0.010		mg/L		08/23/11 16:16	09/02/11 08:10	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	5.0		1.0		mg/L			08/23/11 08:18	1

8

SEP 22 201

TestAmerica Savannah

Client: Solutia Inc.

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Lab Sample ID: 680-71493-7 Client Sample ID: TB-3 Date Collected: 08/17/11 00:00

Matrix: Water

Date Received: 08/18/11 09:37

Method: 8260B - Volatile Or		A1							
Analyte	Result	Qualifier	RL	MDL U	Jnit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0	u	ig/L			08/28/11 14:54	1
Chlorobenzene	1.0	U	1.0	u	ıg/L			08/28/11 14:54	1
1,2-Dichlorobenzene	1.0	U	1.0	ug	ıg/L			08/28/11 14:54	1
1,3-Dichlorobenzene	1.0	U	1.0	u	ıg/L			08/28/11 14:54	1
1,4-Dichlorobenzene	1.0	U	1.0	u	ıg/L			08/28/11 14:54	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	85	-	70 - 130			-	575	08/28/11 14:54	
Dibromofluoromethane	107		70 - 130					08/28/11 14:54	1
T-1	00		70 400					00/00/44 44.54	-

Surrogate Summary

Client: Solutia Inc.

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

				Percent Sur	rogate Recovery (Acceptance Limits)
		BFB	DBFM	TOL	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	(70-130)	
680-71407-1	BSA-MW-1S-0811	107	97	98	
680-71407-3	CPA-MW-2D-0811	104	97	98	
680-71407-5	CPA-MW-2D0811-AD	102	96	98	
680-71407-6	CPA-MW-1D-0811	105	96	98	
680-71407-8	TB-1	98	105	97	
680-71445-1	BSA-MW-2D-0811	104	100	102	
680-71445-3	CPA-MW-3D-0811	104	98	103	
680-71445-5	CPA-MW-5D-0811	106	99	102	
680-71445-5 MS	CPA-MW-5D-0811	99	97	97	
680-71445-5 MSD	CPA-MW-5D-0811	101	98	98	
680-71445-7	BSA-MW-3D-0811	113	99	102	**************************************
680-71445-9	BSA-MW-3D-0811-EB	110	104	102	
680-71445-10	TB-2	108	104	102	
680-71493-1	BSA-MW-4D-0811	86	96	87	
680-71493-3	CPA-MW-4D-0811	88	100	90	
680-71493-5	BSA-MW-5D-0811	87	92	94	
680-71493-7	TB-3	85	107	92	
LCS 680-212578/4	Lab Control Sample	102	99	101	
LCS 680-212580/12	Lab Control Sample	102	101	101	
LCS 680-212817/4	Lab Control Sample	105	95	101	
LCS 680-212983/5	Lab Control Sample	101	102	101	
LCS 680-212984/4	Lab Control Sample	101	103	101	8 9
LCS 680-213206/11	Lab Control Sample	99	102	106	
LCS 680-213243/13	Lab Control Sample	102	101	100	
LCS 680-213379/8	Lab Control Sample	85	92	87	
LCSD 680-212578/5	Lab Control Sample Dup	100	98	99	
LCSD 680-212580/13	Lab Control Sample Dup	105	100	101	
LCSD 680-212817/5	Lab Control Sample Dup	106	97	103	
LCSD 680-212983/6	Lab Control Sample Dup	101	104	104	
LCSD 680-212984/5	Lab Control Sample Dup	106	102	103	
LCSD 680-213206/12	Lab Control Sample Dup	102	102	107	
LCSD 680-213243/14	Lab Control Sample Dup	102	102	103	
LCSD 680-213379/9	Lab Control Sample Dup	102	106	106	
MB 680-212578/7	Method Blank	106	104	98	
MB 680-212580/15	Method Blank	98	105	96	
MB 680-212817/8	Method Blank	101	104	94	
MB 680-212983/4	Method Blank	107	107	102	
MB 680-212984/8	Method Blank	100	107	101	
MB 680-213206/13	Method Blank	86	102	95	
MB 680-213243/17	Method Blank	109	103	102	
MB 680-213379/11	Method Blank	92	126	107	

Surrogate Legend

BFB = 4-Bromofluorobenzene

DBFM = Dibromofluoromethane

TOL = Toluene-d8 (Surr)

SEP 22 2011

TestAmerica Savannah

Page 38 of 77

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Method: 8270C - Semivolatile Organic Compounds (GC/MS)

Matrix: Water

Prep Type: Total/NA

			ance Limits)					
		PHL	2FP	TBP	NBZ	FBP	TPH	
_ab Sample ID	Client Sample ID	(25-130)	(25-130)	(31-141)	(39-130)	(38-130)	(10-143)	
880-71407-1	BSA-MW-1S-0811	64	66	83	66	62	51	
80-71407-3	CPA-MW-2D-0811	67	73	80	67	71	32	
880-71407-5	CPA-MW-2D0811-AD	66	72	82	68	70	39	
80-71407-6	CPA-MW-1D-0811	54	66	67	64	64	16	
80-71445-1	BSA-MW-2D-0811	66	63	90	71	69	58	
80-71445-3	CPA-MW-3D-0811	66	63	91	73	73	67	
80-71445-5	CPA-MW-5D-0811	61	61	93	78	78	75	
80-71445-5 MS	CPA-MW-5D-0811	63	60	89	71	73	30	
80-71445-5 MSD	CPA-MW-5D-0811	64	64	91	73	74	33	
880-71445-7	BSA-MW-3D-0811	59	58	85	66	66	65	
80-71445-9	BSA-MW-3D-0811-EB	67	67	88	75	75	73	
80-71493-1	BSA-MW-4D-0811	74	76	78	69	70	24	
80-71493-3	CPA-MW-4D-0811	47	52	59	49	55	23	
80-71493-5	BSA-MW-5D-0811	50	57	62	55	53	24	
CS 680-212318/19-A	Lab Control Sample	68	69	93	75	77	66	
MB 680-212318/18-A	Method Blank	59	61	83	67	70	69	

Page 39 of 77

Surrogate Legend

PHL = Phenol-d5

2FP = 2-Fluorophenol

TBP = 2,4,6-Tribromophenol

NBZ = Nitrobenzene-d5

FBP = 2-Fluorobiphenyl

TPH = Terphenyl-d14

SEP. 22 2011

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-212578/7

Matrix: Water

Analysis Batch: 212578

Client Sample ID: Method Blank

Prep Type: Total/NA

=	MR	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0		ug/L			08/22/11 12:38	1
Chlorobenzene	1.0	U	1.0		ug/L			08/22/11 12:38	1
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			08/22/11 12:38	1
1,3-Dichlorobenzene	1.0	U	1.0	17 F R 8 9	ug/L	38 78	э э	08/22/11 12:38	1
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			08/22/11 12:38	1

MB MB Surrogate % Recovery Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene 106 70 - 130 08/22/11 12:38 Dibromofluoromethane 104 70 - 130 08/22/11 12:38 Toluene-d8 (Surr) 98 70 - 130 08/22/11 12:38

Lab Sample ID: LCS 680-212578/4

Matrix: Water

Analysis Batch: 212578

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				% Rec.
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits
Benzene	50.0	48.5		ug/L		97	70 - 130
Chlorobenzene	50.0	50.8	v	ug/L		102	70 - 130
1,2-Dichlorobenzene	50.0	62.4		ug/L		125	70 - 130
1,3-Dichlorobenzene	50.0	65.7	* *	ug/L		(131)	70 - 130
1,4-Dichlorobenzene	50.0	64.1		ug/L		128	70 - 130
Chlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene	50.0 50.0 50.0	50.8 62.4 65.7	× (**)	ug/L ug/L ug/L		102 125 131	70 - 70 - 70 -

LCS LCS

Surrogate	% Recovery	Qualifier	Limits
4-Bromofluorobenzene	102		70 - 130
Dibromofluoromethane	99		70 - 130
Toluene-d8 (Surr)	101		70 - 130

Lab Sample ID: LCSD 680-212578/5

Matrix: Water

Analysis Batch: 212578

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	эріке	LCGD	LUGD				% Rec.		KPD	
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit	
Benzene	50.0	47.9		ug/L	-	96	70 - 130	1	30	
Chlorobenzene	50.0	50.2		ug/L		100	70 - 130	1	30	
1,2-Dichlorobenzene	50.0	60.5		ug/L		121	70 - 130	3	30	
1,3-Dichlorobenzene	50.0	64.2		ug/L		128	70 - 130	2	30	
1,4-Dichlorobenzene	50.0	62.3		ug/L		125	70 - 130	3	30	

LCSD LCSD

Surrogate	% Recovery	Qualifier	Limits
4-Bromofluorobenzene	100		70 - 130
Dibromofluoromethane	98		70 - 130
Toluene-d8 (Surr)	99		70 - 130

Lab Sample ID: MB 680-212580/15

Matrix: Water

Analysis Batch: 212580

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0		ug/L			08/22/11 12:52	1

TestAmerica Savannah

Page 40 of 77

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-212580/15 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 212580 мв мв

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlorobenzene	1.0	U	1.0		ug/L			08/22/11 12:52	1
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			08/22/11 12:52	1
1,3-Dichlorobenzene	1.0	U	1.0		ug/L			08/22/11 12:52	1
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			08/22/11 12:52	1
	MB	MB							
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	98		70 - 130			-		08/22/11 12:52	1
Dibromofluoromethane	105		70 - 130					08/22/11 12:52	1
Toluene-d8 (Surr)	96	٠	70 - 130	1 8 8		270	581	08/22/11 12:52	1

Lab Sample ID: LCS 680-212580/12

Analysis Batch: 212580

Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA

		Spike	LCS	LCS			% Rec.	
	Analyte	Added	Result	Qualifier Unit	D	% Rec	Limits	
	Benzene	50.0	48.5	ug/L		97	70 - 130	
	Chlorobenzene	50.0	50.5	ug/L		101	70 - 130	
	1,2-Dichlorobenzene	50.0	52.3	ug/L		105	70 - 130	
	1,3-Dichlorobenzene	50.0	52.4	ug/L		105	70 - 130	
	1,4-Dichlorobenzene	50.0	51.5	ug/L		103	70 - 130	
- 1								

LCS LCS

Surrogate	% Recovery	Qualifier	Limits
4-Bromofluorobenzene	102		70 - 130
Dibromofluoromethane	101		70 - 130
Toluene-d8 (Surr)	101		70 - 130

Lab Sample ID: LCSD 680-212580/13

Matrix: Water

Analysis Batch: 212580

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

	Spike	LCSD	LUSD			% Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D % Rec	Limits	RPD	Limit	
Benzene	50.0	48.9		ug/L	98	70 - 130	1	30	
Chlorobenzene	50.0	51.9		ug/L	104	70 - 130	3	30	
1,2-Dichlorobenzene	50.0	53.5		ug/L	107	70 - 130	2	30	
1,3-Dichlorobenzene	50.0	53.6		ug/L	107	70 - 130	2	30	
1,4-Dichlorobenzene	50.0	52.7		ug/L	105	70 _ 130	2	30	

LCSD LCSD

Surrogate	% Recovery	Qualifier	Limits
4-Bromofluorobenzene	105		70 - 130
Dibromofluoromethane	100		70 - 130
Toluene-d8 (Surr)	101		70 - 130

Lab Sample ID: MB 680-212817/8

Matrix: Water

Analysis Batch: 212817

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0		ug/L			08/23/11 11:13	
Chlorobenzene	1.0	U	1.0		ug/L			08/23/11 11:13	1

TestAmerica Savannah

Prep Type: Total/NA

Client Sample ID: Method Blank

EPA ARCHIVE DOCUMENT

Client: Solutia Inc.

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-212817/8 Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA

Analysis Batch: 212817

MR MR RL MDL Unit Analyte Result Qualifier Analyzed Dil Fac Prepared 1.0 1,2-Dichlorobenzene 1.0 Ū ug/L 08/23/11 11:13 1,3-Dichlorobenzene 1.0 U 1.0 ug/L 08/23/11 11:13 1,4-Dichlorobenzene 1.0 1.0 ug/L 08/23/11 11:13

MR MR Surrogate % Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene 101 70 - 130 08/23/11 11:13 104 70 - 130 08/23/11 11:13 Dibromofluoromethane Toluene-d8 (Surr) 70 - 130 08/23/11 11:13 94

Lab Sample ID: LCS 680-212817/4

Matrix: Water

Analysis Batch: 212817

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS Spike % Rec. Analyte Added Result Qualifier Unit % Rec Limits Benzene 50.0 47 9 ug/L 96 70 - 130 Chlorobenzene 50.0 50.7 ug/L 101 70 - 130 1,2-Dichlorobenzene 50.0 53.7 107 70 - 130 ug/L 1,3-Dichlorobenzene 50.0 54.0 ug/L 108 70 - 130 1.4-Dichlorobenzene 50.0 53.7 ug/L 107 70 - 130

LCS LCS

Surrogate	% Recovery	Qualifier	Limits
4-Bromofluorobenzene	105		70 - 130
Dibromofluoromethane	95		70 - 130
Toluene-d8 (Surr)	101		70 - 130

Lab Sample ID: LCSD 680-212817/5

Matrix: Water

Analysis Batch: 212817

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

LCSD LCSD Spike % Rec. RPD Analyte Added Result Qualifier RPD Limit Unit % Rec Benzene 50.0 47.4 ug/L 95 70 - 130 30 Chlorobenzene 50.0 51.6 ug/L 103 70 - 130 30 1,2-Dichlorobenzene 50.0 55.1 ug/L 110 70 - 130 30 ug/L 1.3-Dichlorobenzene 50.0 54 9 110 70 - 130 30 50.0 30 1.4-Dichlorobenzene 54.0 ug/L 108 70 - 130

LCSD LCSD

Surrogate	% Recovery	Qualifier	Limits
4-Bromofluorobenzene	106	Sa	70 - 130
Dibromofluoromethane	97		70 - 130
Toluene-d8 (Surr)	103		70 - 130

Lab Sample ID: MB 680-212983/4

Matrix: Water Analysis Batch: 212983 Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0	ug/L			08/25/11 12:12	1
Chlorobenzene	1.0	U	1.0	ug/L			08/25/11 12:12	1
1,2-Dichlorobenzene	1.0	U	1.0	ug/L			08/25/11 12:12	1
	Benzene Chlorobenzene	Analyte Result Benzene 1.0 Chlorobenzene 1.0	Benzene 1.0 U Chlorobenzene 1.0 U	Analyte Result Qualifier RL Benzene 1.0 U 1.0 Chlorobenzene 1.0 U 1.0	Analyte Result Qualifier RL MDL Unit Benzene 1.0 U 1.0 ug/L Chlorobenzene 1.0 U 1.0 ug/L	Analyte Result Qualifier RL MDL Unit D Benzene 1.0 U 1.0 ug/L Chlorobenzene 1.0 U 1.0 ug/L	Analyte Result Qualifier RL MDL Unit D Prepared Benzene 1.0 U 1.0 ug/L Chlorobenzene 1.0 U 1.0 ug/L	Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Benzene 1.0 U 1.0 ug/L 08/25/11 12:12 Chlorobenzene 1.0 U 1.0 ug/L 08/25/11 12:12

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-212983/4 Client Sample ID: Method Blank Matrix: Water

Prep Type: Total/NA

Analysis Batch: 212983

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3-Dichlorobenzene	1.0	U	1.0		ug/L			08/25/11 12:12	1
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			08/25/11 12:12	1

	Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
١	4-Bromofluorobenzene	107		70 - 130		08/25/11 12:12	1
	Dibromofluoromethane	107		70 - 130		08/25/11 12:12	1
	Toluene-d8 (Surr)	102		70 - 130		08/25/11 12:12	1

Lab Sample ID: LCS 680-212983/5 Client Sample ID: Lab Control Sample

Matrix: Water Prep Type: Total/NA

Analysis Batch: 212983

	Spike	LCS	LCS				% Rec.
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits
Benzene	50.0	50.4		ug/L	===1	101	70 - 130
Chlorobenzene	50.0	49.5	1	ug/L		99	70 - 130
1,2-Dichlorobenzene	50.0	50.4	1	ug/L		101	70 - 130
1,3-Dichlorobenzene	50.0	50.1	101 101 101	ug/L	55 55 57	100	70 - 130
1,4-Dichlorobenzene	50.0	50.1	į	ug/L		100	70 - 130

LCS LCS

Surrogate	% Recovery	Qualifier	Limits
4-Bromofluorobenzene	101		70 - 130
Dibromofluoromethane	102		70 - 130
Toluene-d8 (Surr)	101		70 - 130

Lab Sample ID: LCSD 680-212983/6

Matrix: Water

Analysis Batch: 212983

Client Sample ID: Lat	Control Sample Dup
	Pren Type: Total/NA

Client Sample ID: CPA-MW-5D-0811

1		Spike	LOSD	LOSD			% Rec.		KPD
	Analyte	Added	Result	Qualifier U	Jnit D	% Rec	Limits	RPD	Limit
	Benzene	50.0	51.6	u	ıg/L	103	70 - 130	2	30
	Chlorobenzene	50.0	50.5	u	ıg/L	101	70 - 130	2	30
	1,2-Dichlorobenzene	50.0	50.0	u	ıg/L	100	70 - 130	1	30
	1,3-Dichlorobenzene	50.0	50.0	u	ıg/L	100	70 - 130	0	30
	1,4-Dichlorobenzene	50.0	50.4	U	ıg/L	101	70 - 130	1	30

LCSD LCSD

LCSD LCSD

Surrogate	% Recovery	Qualifier	Limits
4-Bromofluorobenzene	101	-	70 - 130
Dibromofluoromethane	104		70 - 130
Toluene-d8 (Surr)	104		70 - 130

Lab Sample ID: 680-71445-5 MS

Matrix: Water

Analysis Batch: 212983

Sampl	Sample	Spike	MS.	MS				% Rec.	
Analyte Resu	t Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	
Benzene 2	υ U	1000	969		ug/L		97	70 - 130	
Chlorobenzene 120)	1000	2080		ug/L		84	70 - 130	
1,2-Dichlorobenzene 2	υ	1000	965		ug/L		97	70 - 130	
1,3-Dichlorobenzene 2	U	1000	969		ug/L		97	70 - 130	9.8

TestAmerica Savannah

Prep Type: Total/NA

Page 43 of 77

QC Sample Results

Client: Solutia Inc.

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 680-71445-5 MS

Client Sample ID: CPA-MW-5D-0811

Prep Type: Total/NA

Matrix: Water Amelyaia Databy 242002

Analysis Batch: 212983										
	Sample	Sample	Spike	MS	MS				% Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	
1,4-Dichlorobenzene	20	U	1000	973	4	ug/L		97	70 - 130	
	MS	MS								
Surrogate	% Recovery	Qualifier	Limits							
4-Bromofluorobenzene	99		70 - 130							
Dibromofluoromethane	97		70 - 130				15			
Toluene-d8 (Surr)	97		70 - 130							

Lab Sample ID: 680-71445-5 MSD

Client Sample ID: CPA-MW-5D-0811

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 212983

	Sample	Sample	Spike	MSD	MSD				% Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Benzene	20	U	1000	993		ug/L		99	70 - 130	2	30
Chlorobenzene	1200		1000	2100		ug/L		86	70 - 130	1	30
1,2-Dichlorobenzene	20	U	1000	1020		ug/L		102	70 - 130	6	30
1,3-Dichlorobenzene	20	U	1000	1010	5	ug/L		101	70 - 130	4	30
1,4-Dichlorobenzene	20	U	1000	1010		ug/L		101	70 - 130	4	30

MSD MSD

Surrogate	% Recovery	Qualifier	Limits
4-Bromofluorobenzene	101		70 - 130
Dibromofluoromethane	98		70 - 130
Toluene-d8 (Surr)	98		70 - 130

Lab Sample ID: MB 680-212984/8

Matrix: Water

Analysis Batch: 212984

Client	Sample	ID:	Metho	od	Blank
	Pr	on T	Tyna:	ΓΛ	tal/NA

мв мв MDL Unit Analyte RL Result Qualifier Dil Fac Prepared Analyzed Benzene 1.0 U 1.0 ug/L 08/25/11 12:26 1 Chlorobenzene 1.0 U 1.0 ug/L 08/25/11 12:26 1 1.0 U ug/L 08/25/11 12:26 1,2-Dichlorobenzene 1.0 1 1,3-Dichlorobenzene 1.0 U 1.0 ug/L 08/25/11 12:26 1,4-Dichlorobenzene 1.0 U 1.0 ug/L 08/25/11 12:26

MB MB

П							
	Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	4-Bromofluorobenzene	100		70 - 130		08/25/11 12:26	1
	Dibromofluoromethane	107		70 - 130		08/25/11 12:26	1
1	Toluene-d8 (Surr)	101		70 - 130		08/25/11 12:26	1

Lab Sample ID: LCS 680-212984/4

Matrix: Water

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 212984

Spike	LCS	LCS		% Rec.	
Added	Result	Qualifier Unit	D 9	% Rec Limits	
50.0	51.2	ug/L		102 70 - 130	0
50.0	50.5	ug/L		101 . 70 - 130	0
50.0	50.7	ug/L		101 70 - 130	0
50.0	50.5	ug/L		101 70 - 130	0
50.0	49.8	ug/L		100 70 - 130	0
	Added 50.0 50.0 50.0 50.0	Added Result 50.0 51.2 50.0 50.5 50.0 50.7 50.0 50.5	Added Result Qualifier Unit 50.0 51.2 ug/L 50.0 50.5 ug/L 50.0 50.7 ug/L 50.0 50.5 ug/L	Added Result Qualifier Unit D 9 50.0 51.2 ug/L 50.0 50.5 ug/L 50.0 50.7 ug/L 50.0 50.5 ug/L	Added Result Qualifier Unit D % Rec Limits 50.0 51.2 ug/L 102 70 - 130 50.0 50.5 ug/L 101 70 - 130 50.0 50.7 ug/L 101 70 - 130 50.0 50.5 ug/L 101 70 - 130

Page 44 of 77

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-212984/4

Matrix: Water

Analysis Batch: 212984

LCS LCS

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

% Recovery	Qualifier	Limits
101		70 - 130
103		70 - 130
101		70 - 130
	101	101 103

Lab Sample ID: LCSD 680-212984/5

Matrix: Water

Analysis Batch: 212984

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD	å			% Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Benzene	50.0	51.7		ug/L		103	70 - 130	1	30
Chlorobenzene	50.0	52.1		ug/L		104	70 - 130	3	30
1,2-Dichlorobenzene	50.0	51.8		ug/L		104	70 - 130	2	30
1,3-Dichlorobenzene	50.0	52.2		ug/L		104	70 - 130	3	30
1,4-Dichlorobenzene	50.0	51.1		ug/L		102	70 - 130	3	30
4.000 4.000									

LCSD LCSD

Surrogate	% Recovery	Qualifier	Limits
4-Bromofluorobenzene	106		70 - 130
Dibromofluoromethane	102		70 - 130
Toluene-d8 (Surr)	103		70 - 130

Lab Sample ID: MB 680-213206/13

Matrix: Water

EPA ARCHIVE DOCUMENT

Analysis Batch: 213206

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0		ug/L			08/28/11 14:31	1
Chlorobenzene	1.0	U	1.0		ug/L			08/28/11 14:31	1
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			08/28/11 14:31	1
1,3-Dichlorobenzene	1.0	U	1.0		ug/L			08/28/11 14:31	1
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			08/28/11 14:31	1

Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	86		70 - 130	· · · · · · · · · · · · · · · · · · ·	08/28/11 14:31	
Dibromofluoromethane	102		70 - 130		08/28/11 14:31	1
Toluene-d8 (Surr)	95		70 - 130		08/28/11 14:31	1

Lab Sample ID: LCS 680-213206/11

Matrix: Water

Analysis Batch: 213206

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

ı		Spike	LCS	LCS				% Rec.	
I	Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	
	Benzene	50.0	52.2		ug/L		104	70 - 130	, , , , , , , , , , , , , , , , , , ,
	Chlorobenzene	50.0	49.3		ug/L		99	70 - 130	
	1,2-Dichlorobenzene	50.0	53.6		ug/L		107	70 - 130	
1	1,3-Dichlorobenzene	50.0	51.8		ug/L		104	70 - 130	
	1,4-Dichlorobenzene	50.0	53.8		ug/L		108	70 - 130	
	Benzene Chlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene	50.0 50.0 50.0 50.0	52.2 49.3 53.6 51.8	Quaimer	ug/L ug/L ug/L ug/L		104 99 107 104	70 - 130 70 - 130 70 - 130 70 - 130	

QC Sample Results

Client: Solutia Inc.

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

Client Sample ID: Lab Control Sample

SDG: KPS065

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-213206/11

Matrix: Water

Analysis Batch: 213206

LCS LCS

Surrogate	% Recovery	Qualifier	Limits
4-Bromofluorobenzene	99		70 - 130
Dibromofluoromethane	102		70 - 130
Toluene-d8 (Surr)	106		70 - 130

Lab Sample ID: LCSD 680-213206/12

Matrix: Water

Analysis Batch: 213206

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

	Spike	LCSD	LCSD				% Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit	
Benzene	50.0	54.4	A CONTRACTOR	ug/L		109	70 - 130	4	30	
Chlorobenzene	50.0	52.1		ug/L		104	70 - 130	6	30	
1,2-Dichlorobenzene	50.0	53.8		ug/L		108	70 - 130	0	30	
1,3-Dichlorobenzene	50.0	52.0		ug/L		104	70 - 130	0	30	
1,4-Dichlorobenzene	50.0	54.9		ug/L		110	70 - 130	2	30	

LCSD LCSD

Surrogate	% Recovery	Qualifier	Limits
4-Bromofluorobenzene	102		70 - 130
Dibromofluoromethane	102		70 - 130
Toluene-d8 (Surr)	107		70 - 130

Lab Sample ID: MB 680-213243/17

Matrix: Water

Analysis Batch: 213243

Client Sample ID: Method Blank

Prep Type: Total/NA

мв мв MDL Unit Analyte RL Result Qualifier Prepared Analyzed **Dil Fac** 1.0 U 1.0 ug/L 08/26/11 16:37 Benzene 1.0 U ug/L 08/26/11 16:37 Chlorobenzene 1.0 1,2-Dichlorobenzene 1.0 U 1.0 ug/L 08/26/11 16:37 1,3-Dichlorobenzene 1.0 U 1.0 ug/L 08/26/11 16:37 08/26/11 16:37 1,4-Dichlorobenzene 1.0 U 1.0 ug/L

MB MB

Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	109		70 - 130	·	08/26/11 16:37	1
Dibromofluoromethane	103		70 - 130		08/26/11 16:37	1
Toluene-d8 (Surr)	102		70 - 130		08/26/11 16:37	1

Lab Sample ID: LCS 680-213243/13

Matrix: Water

Analysis Batch: 213243

		Client Sample ID: Lab Control Sample
		Prep Type: Total/NA
Snike	LCS LCS	% Rec

			Spike	LCS	LUS			% Rec.	
	Analyte		Added	Result	Qualifier Un	it D	% Rec	Limits	
	Benzene		50.0	50.3	ug/	L	101	70 - 130	
1	Chlorobenzene		50.0	49.1	ug/	L	98	70 - 130	
	1,2-Dichlorobenzene		50.0	50.0	ug/	L	100	70 - 130	
	1,3-Dichlorobenzene	,	50.0	50.8	ug/	L	102	70 - 130	
	1,4-Dichlorobenzene		50.0	50.7	ug/	L	101	70 - 130	

TestAmerica Savannah

SEP 22 2011 N

Page 46 of 77

TestAmerica Job ID: 680-71407-1

Client Sample ID: Lab Control Sample

SDG: KPS065

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-213243/13

Matrix: Water

Analysis Batch: 213243

LCS LCS

Surrogate	% Recovery	Qualifier	Limits
4-Bromofluorobenzene	102		70 - 130
Dibromofluoromethane	101		70 - 130
Toluene-d8 (Surr)	100		70 - 130

Lab Sample ID: LCSD 680-213243/14

Matrix: Water

Analysis Batch: 213243

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

	Spike	LCSD	LCSD				% Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit	
Benzene	50.0	51.6	·	ug/L	-	103	70 - 130	3	30	
Chlorobenzene	50.0	50.2		ug/L		100	70 - 130	2	30	
1,2-Dichlorobenzene	50.0	51.5		ug/L		103	70 - 130	3	30	
1,3-Dichlorobenzene	50.0	51.2		ug/L	8.0	102	70 - 130	1	30	
1,4-Dichlorobenzene	50.0	50.4		ug/L		101	70 - 130	1	30	

LCSD LCSD

Surrogate	% Recovery	Qualifier	Limits
4-Bromofluorobenzene	102		70 - 130
Dibromofluoromethane	102		70 - 130
Toluene-d8 (Surr)	103		70 - 130

Lab Sample ID: MB 680-213379/11

Matrix: Water

EPA ARCHIVE DOCUMENT

Analysis Batch: 213379

Client Sample ID: Method Blank

Prep Type: Total/NA

		MID	IVID							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Benzene	1.0	U	1.0		ug/L			08/30/11 11:56	1
	Chlorobenzene	1.0	U	1.0		ug/L			08/30/11 11:56	1
	1,2-Dichlorobenzene	1.0	U	1.0		ug/L			08/30/11 11:56	1
	1,3-Dichlorobenzene	1.0	U	1.0		ug/L			08/30/11 11:56	1
	1,4-Dichlorobenzene	1.0	U	1.0		ug/L			08/30/11 11:56	1
- 1										

	IVIB	IVIB					
Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene	92		70 - 130		08/30/11 11:56	1	
Dibromofluoromethane	126		70 - 130		08/30/11 11:56	1	
Toluene-d8 (Surr)	107		70 - 130		08/30/11 11:56	1	

Lab Sample ID: LCS 680-213379/8

Matrix: Water

Analysis Batch: 213379

Client Sample ID:	Lab	Control	Sample	
	Pren	Type: 1	otal/NA	

1		Spike	LCS	LCS		% Rec.	
	Analyte	Added	Result	Qualifier Unit	D % Rec	Limits	
	Benzene	50.0	46.2	ug/L	92	70 - 130	
	Chlorobenzene	50.0	42.3	ug/L	85	70 - 130	
	1,2-Dichlorobenzene	50.0	43.6	ug/L	87	70 - 130	
	1,3-Dichlorobenzene	50.0	42.9	ug/L	86	70 - 130	
	1,4-Dichlorobenzene	50.0	44.7	ug/L	89	70 - 130	

TestAmerica Savannah

SEP 2 2 2011

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-213379/8

Matrix: Water

Analysis Batch: 213379

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS

Surrogate	% Recovery	Qualifier	Limits
4-Bromofluorobenzene	85		70 - 130
Dibromofluoromethane	92		70 - 130
Toluene-d8 (Surr)	87		70 - 130

Lab Sample ID: LCSD 680-213379/9

Matrix: Water

Analysis Batch: 213379

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				% Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Benzene	50.0	53.1	-	ug/L		106	70 - 130	14	30
Chlorobenzene	50.0	49.6		ug/L		99	70 - 130	16	30
1,2-Dichlorobenzene	50.0	52.8		ug/L		106	70 - 130	19	30
1,3-Dichlorobenzene	50.0	51.6		ug/L		103	70 - 130	19	30
1,4-Dichlorobenzene	50.0	53.3		ug/L		107	70 - 130	17	30

LCSD LCSD

Surrogate	% Recovery	Qualifier	Limits
4-Bromofluorobenzene	102		70 - 130
Dibromofluoromethane	106		70 - 130
Toluene-d8 (Surr)	106		70 - 130

Method: 8270C - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-212318/18-A

Matrix: Water

EPA ARCHIVE DOCUMENT

Analysis Batch: 212469

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 212318

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Chloroaniline	20	U	20		ug/L		08/19/11 14:58	08/22/11 12:40	1
1,2,4-Trichlorobenzene	10	U	10		ug/L		08/19/11 14:58	08/22/11 12:40	1
1,4-Dioxane	10	U	10		ug/L		08/19/11 14:58	08/22/11 12:40	1
2-Chlorophenol	10	U	10		ug/L		08/19/11 14:58	08/22/11 12:40	1
	MB	MB							
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dhanal dE	50		25 120				00/10/11 14:50	09/22/11 12:40	

Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Phenol-d5	59		25 - 130	08/19/11 14:58	08/22/11 12:40	1
2,4,6-Tribromophenol	83		31 - 141	08/19/11 14:58	08/22/11 12:40	1
2-Fluorophenol	61		25 - 130	08/19/11 14:58	08/22/11 12:40	1
2-Fluorobiphenyl	70		38 - 130	08/19/11 14:58	08/22/11 12:40	1
Nitrobenzene-d5	67		39 _ 130	08/19/11 14:58	08/22/11 12:40	1
Terphenyl-d14	69		10 - 143	08/19/11 14:58	08/22/11 12:40	1

Lab Sample ID: LCS 680-212318/19-A

Matrix: Water

Analysis Batch: 212469

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 212318

	Spike	LCS	LCS			% Rec.	
Analyte	Added	Result	Qualifier Unit	D	% Rec	Limits	
4-Chloroaniline	100	57.4	ug/L		57	42 - 130	
1,2,4-Trichlorobenzene	100	63.8	ug/L		64	42 - 130	
1,4-Dioxane	100	48.2	ug/L		48	35 - 130	
2-Chlorophenol	100	72.8	ug/L		73	57 - 130	

TestAmerica Savannah

SEP 2 2 2011 MM

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-212318/19-A

Matrix: Water

Analysis Batch: 212469

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 212318

	LCG	LUJ	
Surrogate	% Recovery	Qualifier	Limits
Phenol-d5	68		25 - 130
2,4,6-Tribromophenol	93		31 - 141
2-Fluorophenol	69		25 - 130
2-Fluorobiphenyl	77		38 - 130
Nitrobenzene-d5	75		39 - 130
Temhenvi-d14	66		10 - 143

Lab Sample ID: 680-71445-5 MS

Matrix: Water

Analysis Batch: 212469

Client Sample ID: CPA-MW-5D-0811

Prep Type: Total/NA

Prep Batch: 212318

Spike MS MS % Rec. Sample Sample Analyte Result Qualifier Added Result Qualifier % Rec Limits Unit 19 U 19.4 F 4-Chloroaniline 94.8 20 42 - 130 ug/L 2-Chlorophenol 11 94.8 67.9 57 - 130 ug/L 1,4-Dioxane 9.5 94.8 37.2 ug/L 39 35 - 130 1,2,4-Trichlorobenzene 9.5 U 53.4 ug/L 42 - 130

MS	MS
IVIS	IVIO

MSD MSD

33

Surrogate	% Recovery	Qualifier	Limits
Phenol-d5	63		25 - 130
2-Fluorophenol	60		25 - 130
2,4,6-Tribromophenol	89		31 - 141
Nitrobenzene-d5	71		39 - 130
2-Fluorobiphenyl	73		38 - 130
Terphenyl-d14	30		10 - 143

Lab Sample ID: 680-71445-5 MSD

Matrix: Water

Terphenyl-d14

Analysis Batch: 212469

Client Sample ID: CPA-MW-5D-0811

Prep Type: Total/NA

Prep Batch: 212318

	Sample	Sample	Spike	MSD	MSD			% Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit [% Rec	Limits	RPD	Limit
4-Chloroaniline	19	U	95.3	22.5	F	ug/L	24	42 - 130	15	50
2-Chlorophenol	11		95.3	71.0		ug/L	63	57 - 130	4	50
1,4-Dioxane	9.5		95.3	41.3		ug/L	43	35 - 130	10	50
1,2,4-Trichlorobenzene	9.5		95.3	57.7		ug/L	61	42 - 130	8	50

Surrogate	% Recovery	Qualifier	Limits
Phenol-d5	64		25 - 130
2-Fluorophenol	64		25 - 130
2,4,6-Tribromophenol	91		31 - 141
Nitrobenzene-d5	73		39 - 130
2 Eluorohinhenyl	7.1		28 120

SEP 2 2 2011

10 - 143

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Method: RSK-175 - Dissolved Gases (GC)

Lab Sample ID: MB 680-212627/15 Client Sample ID: Method Blank

Matrix: Water Prep Type: Total/NA

Analysis Batch: 212627

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	1.1	U	1.1		ug/L			08/22/11 16:33	. 1
Ethylene	1.0	U	1.0		ug/L			08/22/11 16:33	1
Methane	0.58	U	0.58		ug/L			08/22/11 16:33	1

Lab Sample ID: LCS 680-212627/14 Client Sample ID: Lab Control Sample

Matrix: Water Prep Type: Total/NA

Analysis Batch: 212627

	Spike	LCS	LCS				% Rec.	
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	
Ethane	282	327		ug/L		116	75 - 125	"
Ethylene	271	317		ug/L		117	75 - 125	
Methane	153	181		ug/L		118	75 - 125	

Lab Sample ID: LCSD 680-212627/16 Client Sample ID: Lab Control Sample Dup Matrix: Water Prep Type: Total/NA

Analysis Batch: 212627

LCSD LCSD Spike RPD Analyte Added Result Qualifier Unit % Rec Limits Limit Ethane 282 299 ug/L 106 75 - 125 30 Ethylene 271 291 ug/L 108 75 - 125 30 153 166 ug/L 75 - 125 Methane 108

Lab Sample ID: MB 680-212629/9 Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA

Analysis Batch: 212629 MB MB

RL MDL Unit Analyte Result Qualifier Dil Fac Prepared Analyzed 0.58 Methane 0.58 U ug/L 08/22/11 16:33

Lab Sample ID: LCS 680-212629/8 Client Sample ID: Lab Control Sample

Matrix: Water Prep Type: Total/NA Analysis Batch: 212629

Spike LCS LCS % Rec. Analyte Added Limits Result Qualifier Unit % Rec

1910 1610 75 - 125 Methane

Lab Sample ID: LCSD 680-212629/10 Client Sample ID: Lab Control Sample Dup Matrix: Water Prep Type: Total/NA

Analysis Batch: 212629

LCSD LCSD Spike % Rec. RPD Analyte Added Result Qualifier % Rec Limits RPD Limit Methane 1910 1640 ug/L 75 - 125

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 680-212678/1-A Client Sample ID: Method Blank Matrix: Water Prep Type: Total Recoverable

Analysis Batch: 213761 Prep Batch: 212678

MR MR Analyte Result Qualifier RL Prepared Analyzed Iron 0.050 U 0.050 mg/L 08/23/11 16:14 09/02/11 05:38

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Method: 6010B - Metals (IC	CP) (Continued)
----------------------------	-----------------

Lab Sample ID: MB 680-212678/1-A Client Sample ID: Method Blank Matrix: Water Prep Type: Total Recoverable Analysis Batch: 213761 Prep Batch: 212678

MR MR MDL Unit Analyte Result Qualifier RL Analyzed Prepared Iron, Dissolved 0.050 U 0.050 mg/L 08/23/11 16:14 09/02/11 05:38 Manganese 0.010 U 0.010 mg/L 08/23/11 16:14 09/02/11 05:38 0.010 U 0.010 Manganese, Dissolved mg/L 08/23/11 16:14 09/02/11 05:38

Lab Sample ID: LCS 680-212678/2-A

Matrix: Water

Analysis Batch: 213761

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 212678

- 10.10m								
		Spike	LCS	LCS			% Rec.	
Analyte		Added	Result	Qualifier	Unit	D % Rec	Limits	
 fron	80	5.00	- 5.06		mg/L	101	75 - 125	
Iron, Dissolved	19	5.00	5.06		mg/L	101	75 - 125	
Manganese		0.500	0.517		mg/L	103	75 - 125	
Manganese, Dissolved		0.500	0.517		mg/L	103	75 - 125	

Lab Sample ID: 680-71407-1 MS

Matrix: Water

Analysis Batch: 213761

Client Sample ID: BSA-MW-1S-0811

Prep Type: Total Recoverable

Prep Batch: 212678

150	Sample	Sample	Spike	MS	MS				% Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits		
Iron	4.5		5.00	9.31		mg/L		96	75 - 125		
Iron, Dissolved	4.5		5.00	9.31		mg/L		96	75 - 125		
Manganese	0.63		0.500	1.12		mg/L		98	75 - 125		
Manganese, Dissolved	0.63		0.500	1.12	8.8 9	mg/L	881 181 441	98	75 - 125	8.8	* 5

Lab Sample ID: 680-71407-1 MSD

Matrix: Water

Analysis Batch: 213761

Client Sample ID: BSA-MW-1S-0811

Prep Type: Total Recoverable

Prep Batch: 212678

- 1	 And a property of a property of the contract of the property of t											
		Sample	Sample	Spike	MSD	MSD				% Rec.		RPD
	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit '
	Iron	4.5		5.00	9.50		mg/L		100	75 - 125	2	20
	Iron, Dissolved	4.5		5.00	9.50		mg/L		100	75 - 125	2	20
	Manganese	0.63		0.500	1.14		mg/L		102	75 - 125	2	20
	Manganese, Dissolved	0.63		0.500	1.14		mg/L		102	75 - 125	2	20

Method: 310.1 - Alkalinity

Lab Sample ID: MB 680-212043/2

Matrix: Water

Analysis Batch: 212043

Client Sample ID: Method Blank

Prep Type: Total/NA

	IVID	MID							
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	5.0	U	5.0		mg/L			08/16/11 15:16	1
Carbon Dioxide, Free	5.0	U	5.0		mg/L			08/16/11 15:16	1

Page 51 of 77

Lab Sample ID: LCS 680-212043/3

Matrix: Water

Analysis Batch: 212043

		Spike	
Ar	nalyte	Added	
ΔΙΙ	kalinity	230	

LCS LCS Result Qualifier 212

Unit % Rec mg/L

% Rec.

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Limits

80 - 120

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

Client Sample ID: Method Blank

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

SDG: KPS065

Method: 310.1 - Alkalinity (Continued)
------------------------------	------------

Lab Sample ID: LCSD 680-212043/12

									3.5
Matrix: Water		,,					Prep T	ype: To	tal/NA
Analysis Batch: 212043									
	Spike	LCSD	LCSD				% Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Alkalinity	230	209		ma/l		91	80 120	2	30

Lab Sample ID: MB 680-212187/2

Matrix: Water

Analysis Batch: 212187

Milaly old Baton: 212101			8						
~	MB	MB							
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	5.0	U	5.0		mg/L			08/17/11 16:01	1
Carbon Dioxide, Free	5.0	U	5.0		mg/L			08/17/11 16:01	1

Lab Sample ID: LCS 680-212187/3 Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA Analysis Batch: 212187 LCS LCS Spike % Rec. Analyte Added Result Qualifier Limits % Rec Unit 230 80 - 120 Alkalinity 219 mg/L Lab Sample ID: LCSD 680-212187/28 Client Sample ID: Lab Control Sample Dup

Matrix: Water Prep Type: Total/NA Analysis Batch: 212187 LCSD LCSD Spike RPD % Rec. Analyte Result Qualifier Limits Added Unit RPD Limit Alkalinity 230 209 mg/L 80 - 120

Lab Sample ID: 680-71445-5 DU

Matrix: Water

Analysis Batch: 212187

1	Alialysis Datcii. 212101									
		Sample	Sample	DU	DU				RPD	
	Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit	
	Alkalinity	380		381		mg/L		 0.03	30	
ı	Carbon Dioxide, Free	96		95.3		mg/L		0.5	30	

Lab Sample ID: MB 680-212405/2

Matrix: Water

Analysis Batch: 212405

Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Alkalinity	380		381		mg/L		 0.03	30
Carbon Dioxide, Free	96		95.3		mg/L		0.5	30

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: CPA-MW-5D-0811

Prep Type: Total/NA

мв мв RL RL Unit Analyte Result Qualifier Prepared Analyzed Dil Fac Alkalinity 5.0 U 5.0 08/18/11 20:27 mg/L 5.0 U 5.0 08/18/11 20:27 Carbon Dioxide, Free mg/L

Lab Sample ID: LCS 680-212405/3

Matrix: Water

Analysis Batch: 212405

	Spike	LCS	LCS				% Rec.
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits
Alkalinity	230	209		mg/L		91	80 - 120

SEP 22 2011

Prep Type: Total/NA

Project/Site: WGK LTM - 3Q11 - AUG 2011

Method: 310.1 - Alkalinity (Continued)

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Lab Sample ID: LCSD 680-212405/ Matrix: Water	11					Clie	nt Sam	ole ID: La	ab Control Prep Ty		
Analysis Batch: 212405										p	
•			Spike	LCSD	LCSD				% Rec.		RPI
Analyte		A	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limi
Alkalinity			230	209		mg/L		91	80 - 120	0	3
lethod: 325.2 - Chloride											•
Lab Sample ID: MB 680-212944/1						· ·	(Client Sa	mple ID: N		
Matrix: Water Analysis Batch: 212944									Prep Ty	pe: To	otal/NA
		MB		DI M	IDI U-ia		D D				D:1 F
Analyte Chloride	1.0	Qualifier U	- T	1.0 N	MDL Unit mg/L		D Pre	pared	08/25/11 1:	75.55	Dil Fa
Lab Sample ID: LCS 680-212944/6							Client :	Sample I	D: Lab Co	ntrol S	Sample
Matrix: Water							Onone.	Jampie i	Prep Ty		
Analysis Batch: 212944										p	
•		ě	Spike	LCS	LCS				% Rec.		
Analyte		A	dded	Result	Qualifier	Unit	D	% Rec	Limits		
Chloride			50.0	54.8		mg/L		110	85 - 115		
Lab Sample ID: 680-71407-1 MS						4	Clier	nt Sampl	e ID: BSA-	MW-15	S-081
Matrix: Water									Prep Ty	pe: To	tal/N
Analysis Batch: 212944											
	Sample Sam	ple	Spike	MS	MS				% Rec.		
Analyte	Result Qua	lifier A	dded	7,000,000	Qualifier	Unit	D	% Ree	Limits		
Chloride	240		50.0	280	4	mg/L			85 - 115		
Lab Sample ID: 680-71407-1 MSD							Clier	nt Sampl	e ID: BSA-	MW-19	S-081
Matrix: Water									Prep Ty		
Analysis Batch: 212944											
	Sample Sam	ple	Spike	MSD	MSD				% Rec.		RPI
Analyte	Result Qua	lifier A	dded	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limi
Chloride	240		50.0	278	4	mg/L		74	85 - 115	0	3
Lab Sample ID: 680-71407-3 DU							Clier	t Sampl	e ID: CPA-	MW-20	D-081
Matrix: Water									Prep Ty	pe: To	tal/NA
Analysis Batch: 212944											
	Sample Sam	ple		DU	DU						RP
Analyte	Result Qua	lifier			Qualifier	Unit	<u>D</u>			RPD	Limi
Chloride	65			65.8		mg/L				0.5	30
lethod: 353.2 - Nitrogen, Nitra	ite-Nitrite										
Lab Sample ID: MB 680-212081/14							c	lient Sa	mple ID: M	lethod	Blank
Matrix: Water			7.1						Prep Ty	pe: To	tal/NA
Analysis Batch: 212081	•	мв									
Analyte		MB Qualifier		RL M	DL Unit	ı	D Pre	pared	Analyze	d	Dil Fac
Nitrate as N	0.050			050					08/16/11 17		

SEP 22 2011 WW

TestAmerica Job ID: 680-71407-1

Client Sample ID: Method Blank

Prep Type: Total/NA

SDG: KPS065

Method: 353.2 - Nitrogen, Nitrate-Nitrite (Continued)

	Lab Sample ID: LCS 680-212081/15 Matrix: Water Analysis Batch: 212081				,	Client	Sample		ntrol Sample pe: Total/NA
		Spike	LCS	LCS				% Rec.	
	Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	
Ì	Nitrate as N	0.500	0.501		mg/L		100	90 - 110	
	Nitrate Nitrite as N	1.00	1.00		mg/L		100	90 - 110	
2	Nitrite as N	0.500	0.501		mg/L		100	90 - 110	

Client Sample ID: BSA-MW-1S-0811 Lab Sample ID: 680-71407-1 MS Matrix: Water Prep Type: Total/NA

Analysis Batch: 212081

MS MS Sample Sample Spike % Rec. Analyte Result Qualifier Limits Result Qualifier Added Unit % Rec Nitrate as N 0.050 U 0.500 0.522 mg/L 104 90 - 110 1.03 103 Nitrate Nitrite as N 0.050 1.00 mg/L 90 - 110 0.500 90 - 110 0.050 0.503 101 Nitrite as N mg/L

Client Sample ID: BSA-MW-1S-0811 Lab Sample ID: 680-71407-1 MSD Matrix: Water Prep Type: Total/NA

Analysis Batch: 212081

MSD MSD Sample Sample Spike % Rec. Analyte RPD Result Qualifier Added Result Qualifier Unit % Rec Limits Limit Nitrate as N 0.050 U 0.500 0.521 mg/L 104 90 - 110 0 10 0.050 90 - 110 Nitrate Nitrite as N 1.00 1.03 mg/L 103 10 Nitrite as N 0.050 0.500 0.504 mg/L 101 90 - 110 10

Lab Sample ID: MB 680-212333/14

Matrix: Water

Analysis Batch: 212333

	IVID	INID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	0.050	U	0.050		mg/L			08/17/11 14:53	1

Lab Sample ID: LCS 680-212333/15 Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA

Analysis Batch: 212333

• 000 000 000 000 000	Spike	LCS	LCS				% Rec.	
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	
Nitrate as N	0.500	0.496		mg/L		99	90 - 110	
Nitrate Nitrite as N	1.00	1.00		mg/L		100	90 - 110	
Nitrite as N	0.500	0.506		mg/L		101	90 - 110	

Client Sample ID: Method Blank Lab Sample ID: MB 680-212334/14 Matrix: Water Prep Type: Total/NA

Analysis Batch: 212334

	1112	III.D							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	0.050	U	0.050		mg/L			08/18/11 15:37	1

Lab Sample ID: LCS 680-212334/15 Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA Analysis Batch: 212334

MR MR

Allalysis Datcii. 212334								
	Spike	LCS	LCS				% Rec.	
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	
Nitrate as N	0.500	0.504		mg/L		101	90 - 110	

TestAmerica Savannah

Page 54 of 77

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Lab Sample ID: LCS 680-212334/15	5								Client	t S	ample l	ID: Lab Co		
Matrix: Water												Prep Ty	pe: To	tal/N/
Analysis Batch: 212334														
				Spike			LCS					% Rec.		
Analyte				Added			Qualifier	Unit) 	% Rec	Limits		
Nitrate Nitrite as N				1.00		1.01		mg/L			101	90 - 110		
Nitrite as N				0.500		0.507		mg/L			101	90 - 110		
Method: 375.4 - Sulfate										100100				
Lab Sample ID: MB 680-212968/1										C	lient Sa	mple ID: N		
Matrix: Water												Prep Ty	pe: To	tal/NA
Analysis Batch: 212968														
The second secon	u u	MB N	2 2022222 TE	2 (34 9 199	<u> </u>			E (999)						
Analyte	R	esult (RL	М	DL Unit		D P	rep	pared	Analyze		Dil Fa
Sulfate		5.0 L	J		5.0		mg/L					08/25/11 1	6:04	
Lab Sample ID: LCS 680-212968/2									Client	t S	ample I	D: Lab Co		
Matrix: Water												Prep Ty	pe: To	tal/N/
Analysis Batch: 212968														
0 2 7				Spike			LCS					% Rec.		
Analyte		-		Added			Qualifier	Unit) -	% Rec	Limits		
Sulfate				20.0		20.7		mg/L			103	75 - 125		
Lab Sample ID: 680-71407-1 MS									Clie	ent	t Sampl	e ID: BSA	-MW-19	S-081
Matrix: Water												Prep Ty		
Analysis Batch: 212968													•	
	Sample	0				140	MS					0/ 0		
	Janipic	Sampi	е	Spike		IVIS	INIO					% Rec.		
Analyte	3411	Qualifi		Spike Added			Qualifier	Unit	D)	% Rec	% Rec. Limits		
Analyte Sulfate	3411	Qualifi						Unit mg/L	D) -	% Rec 101			
Sulfate	Result	Qualifi		Added		Result				- >-	101	Limits 75 - 125	-MW-15	S-081
Sulfate Lab Sample ID: 680-71407-1 MSD	Result	Qualifi		Added		Result				- >-	101	Limits 75 - 125 e ID: BSA		
Sulfate Lab Sample ID: 680-71407-1 MSD Matrix: Water	Result	Qualifi		Added		Result				- >-	101	Limits 75 - 125		
Sulfate Lab Sample ID: 680-71407-1 MSD	Result 50	Qualifi	er	Added 200		Result	Qualifier			- >-	101	Limits 75 - 125 e ID: BSA		
Sulfate Lab Sample ID: 680-71407-1 MSD Matrix: Water Analysis Batch: 212968	Result 50	Qualifi U Sampl	er	Added		Result 202 MSD	Qualifier	mg/L		ent	101	Limits 75 - 125 e ID: BSA Prep Ty		tal/NA
Sulfate Lab Sample ID: 680-71407-1 MSD Matrix: Water	Sample Result	Qualifi	er	Added 200 Spike		Result 202 MSD	Qualifier MSD		Clie	ent	101	Limits 75 - 125 e ID: BSA Prep Ty % Rec.	pe: To	tal/NA
Sulfate Lab Sample ID: 680-71407-1 MSD Matrix: Water Analysis Batch: 212968 Analyte Sulfate	Sample Result	Qualifi U Sampl Qualifi	er	Added 200 Spike Added		Result 202 MSD Result	Qualifier MSD	mg/L Unit	Clie	ent	101 t Sampl % Rec	Limits 75 - 125 e ID: BSA Prep Ty % Rec. Limits	RPD 2	RPI Limi
Sulfate Lab Sample ID: 680-71407-1 MSD Matrix: Water Analysis Batch: 212968 Analyte	Sample Result	Qualifi U Sampl Qualifi	er	Added 200 Spike Added		Result 202 MSD Result	Qualifier MSD	mg/L Unit	Clie	ent	101 t Sampl % Rec	Limits 75 - 125 e ID: BSA- Prep Ty % Rec. Limits 75 - 125 e ID: CPA-	RPD 2	RPC Limi 30
Lab Sample ID: 680-71407-1 MSD Matrix: Water Analysis Batch: 212968 Analyte Sulfate Lab Sample ID: 680-71407-3 DU Matrix: Water	Sample Result	Qualifi U Sampl Qualifi	er	Added 200 Spike Added		Result 202 MSD Result	Qualifier MSD	mg/L Unit	Clie	ent	101 t Sampl % Rec	Limits 75 - 125 e ID: BSA Prep Ty % Rec. Limits 75 - 125	RPD 2	RPC Limi 30
Sulfate Lab Sample ID: 680-71407-1 MSD Matrix: Water Analysis Batch: 212968 Analyte Sulfate Lab Sample ID: 680-71407-3 DU	Sample Result	Qualifi U Sampl Qualifi U	er e er	Added 200 Spike Added		MSD Result	Qualifier MSD	mg/L Unit	Clie	ent	101 t Sampl % Rec	Limits 75 - 125 e ID: BSA- Prep Ty % Rec. Limits 75 - 125 e ID: CPA-	RPD 2	RPC Limi 30
Lab Sample ID: 680-71407-1 MSD Matrix: Water Analysis Batch: 212968 Analyte Sulfate Lab Sample ID: 680-71407-3 DU Matrix: Water	Sample Result 50 Sample Result	Qualifi U Sampl Qualifi U	er e	Added 200 Spike Added		MSD Result 197	Qualifier MSD Qualifier	mg/L Unit	Clie	ent ent	101 t Sampl % Rec	Limits 75 - 125 e ID: BSA- Prep Ty % Rec. Limits 75 - 125 e ID: CPA-	RPD 2	RPE Limi 30 D-0811 tal/NA
Lab Sample ID: 680-71407-1 MSD Matrix: Water Analysis Batch: 212968 Analyte Sulfate Lab Sample ID: 680-71407-3 DU Matrix: Water Analysis Batch: 212968	Sample Result 50 Sample Result	Qualifi U Sampl Qualifi U	er e	Added 200 Spike Added		MSD Result 197	MSD Qualifier DU Qualifier	Unit mg/L	Clie	ent ent	101 t Sampl % Rec	Limits 75 - 125 e ID: BSA- Prep Ty % Rec. Limits 75 - 125 e ID: CPA-	RPD 2 MW-2E pe: To	RPE Limi 30 D-0811 tal/NA
Lab Sample ID: 680-71407-1 MSD Matrix: Water Analysis Batch: 212968 Analyte Sulfate Lab Sample ID: 680-71407-3 DU Matrix: Water Analysis Batch: 212968 Analyte Sulfate	Sample Result 50 Sample Result Football Sample Result Result Result Result Result Result	Qualifi U Sampl Qualifi U	er e	Added 200 Spike Added		MSD Result 197	MSD Qualifier DU Qualifier	Unit mg/L	Clie	ent ent	101 t Sampl % Rec	Limits 75 - 125 e ID: BSA- Prep Ty % Rec. Limits 75 - 125 e ID: CPA-	RPD 2 MW-2E pe: To	RPE Limi 30 D-0811 tal/NA RPE Limi
Lab Sample ID: 680-71407-1 MSD Matrix: Water Analysis Batch: 212968 Analyte Sulfate Lab Sample ID: 680-71407-3 DU Matrix: Water Analysis Batch: 212968 Analyte Sulfate Method: 415.1 - DOC	Sample Result 50 Sample Result Football Sample Result Result Result Result Result Result	Qualifi U Sampl Qualifi U	er e	Added 200 Spike Added		MSD Result 197	MSD Qualifier DU Qualifier	Unit mg/L	Clie	ent	t Sampl	Limits 75 - 125 e ID: BSA Prep Ty % Rec. Limits 75 - 125 e ID: CPA Prep Ty	RPD 2 MW-2E pe: To	RPI Limi 30 D-081 tal/NA RPI Limi
Lab Sample ID: 680-71407-1 MSD Matrix: Water Analysis Batch: 212968 Analyte Sulfate Lab Sample ID: 680-71407-3 DU Matrix: Water Analysis Batch: 212968 Analyte Sulfate Method: 415.1 - DOC Lab Sample ID: 680-71445-2 DU	Sample Result 50 Sample Result Football Sample Result Result Result Result Result Result	Qualifi U Sampl Qualifi U	er e	Added 200 Spike Added		MSD Result 197	MSD Qualifier DU Qualifier	Unit mg/L	Clie	ent	t Sampl	Limits 75 - 125 e ID: BSA- Prep Ty % Rec. Limits 75 - 125 e ID: CPA- Prep Ty	RPD 2 MW-2E pe: To RPD NC	RPE Limi 30 CO-0811 RPE Limi 30 CO-0811 CO-081
Lab Sample ID: 680-71407-1 MSD Matrix: Water Analysis Batch: 212968 Analyte Sulfate Lab Sample ID: 680-71407-3 DU Matrix: Water Analysis Batch: 212968 Analyte Sulfate Method: 415.1 - DOC Lab Sample ID: 680-71445-2 DU Matrix: Water	Sample Result 50 Sample Result Football Sample Result Result Result Result Result Result	Qualifi U Sampl Qualifi U	er e	Added 200 Spike Added		MSD Result 197	MSD Qualifier DU Qualifier	Unit mg/L	Clie	ent	t Sampl	Limits 75 - 125 e ID: BSA Prep Ty % Rec. Limits 75 - 125 e ID: CPA Prep Ty	RPD 2 MW-2E pe: To RPD NC	RPE Limi 30 CO-0811 RPE Limi 30 CO-0811 CO-081
Lab Sample ID: 680-71407-1 MSD Matrix: Water Analysis Batch: 212968 Analyte Sulfate Lab Sample ID: 680-71407-3 DU Matrix: Water Analysis Batch: 212968 Analyte Sulfate Method: 415.1 - DOC Lab Sample ID: 680-71445-2 DU	Sample Result 50 Sample Result 50	Sampl Qualifi U Sampl Qualifi U	er e er e	Added 200 Spike Added		MSD Result 197 DU Result 5.0	MSD Qualifier DU Qualifier U	Unit mg/L	Clie	ent	t Sampl	Limits 75 - 125 e ID: BSA- Prep Ty % Rec. Limits 75 - 125 e ID: CPA- Prep Ty	RPD 2 MW-2E pe: To RPD NC	Property of the control of the contr
Lab Sample ID: 680-71407-1 MSD Matrix: Water Analysis Batch: 212968 Analyte Sulfate Lab Sample ID: 680-71407-3 DU Matrix: Water Analysis Batch: 212968 Analyte Sulfate Method: 415.1 - DOC Lab Sample ID: 680-71445-2 DU Matrix: Water	Sample Result 50 Sample Result 5.0	Sampl Qualifi U Sampl Qualifi U	er e er er	Added 200 Spike Added		MSD Result 197 DU Result 5.0	MSD Qualifier DU Qualifier U	Unit mg/L	Clie	ent	t Sampl	Limits 75 - 125 e ID: BSA- Prep Ty % Rec. Limits 75 - 125 e ID: CPA- Prep Ty	RPD 2 MW-2E pe: To RPD NC	RPE Limi 30 CO-0811 RPE Limi 30 CO-0811 CO-081

SEP 22 2011

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Lab Sample ID: MB 680-212990/2										•	liont Sa	mple ID: I	/lothod	l Blani
Matrix: Water										•	ment Sa	Prep Ty		
Analysis Batch: 212990												i iep i	pe. Ic	Julia
Allalysis Batch. 212330		MB	мв											
Analyte	Р		Qualifier		RL	M	DL Unit		D	Dro	pared	Analyz	ad.	Dil Fac
Total Organic Carbon		1.0	U		1.0	,,,,,	mg/L		<u> </u>	FIE	pareu	08/25/11 0		DII Fat
es!														
Lab Sample ID: LCS 680-212990/4									Clie	ent S	Sample I	D: Lab Co		
Matrix: Water												Prep Ty	pe: To	otal/N/
Analysis Batch: 212990														
				Spike		LCS	LCS					% Rec.		
Analyte				Added			Qualifier	Unit		D	% Rec	Limits		
Total Organic Carbon				20.0		19.3		mg/L			97	80 - 120		
Lab Sample ID: MB 680-213429/35	7 to 1987 FML	ner datas		e una como o	1990					C	lient Sa	mple ID: N	/lethod	Blan
Matrix: Water												Prep Ty		
Analysis Batch: 213429														
		МВ	МВ											
Analyte	R	esult	Qualifier		RL	М	IDL Unit		D	Pre	pared	Analyze	d	Dil Fa
Total Organic Carbon		1.0	U		1.0	000-0	mg/L					08/30/11 1		
•														
Lab Sample ID: LCS 680-213429/36	i						*		Clie	ent S	Sample I	D: Lab Co	ntrol S	Sample
Matrix: Water												Prep Ty	pe: To	tal/NA
Analysis Batch: 213429													-	
-				Spike		LCS	LCS					% Rec.		
Analyte				Added		Result	Qualifier	Unit		D	% Rec	Limits		
Total Organic Carbon				20.0		19.5		mg/L			98	80 - 120		
Lab Sample ID: 680-71407-1 MS										lier	t Samni	e ID: BSA	.M\W_1	S_081 ⁻
Matrix: Water									-		it Gamp.	Prep Ty		
Analysis Batch: 213429												11001)	рс. го	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Analysis Batch. 213423	Sample	Sam	nle	Spike		MS	MS					% Rec.		
Analyte	Result			Added		5-4-10-E-1	Qualifier	Unit		D	% Rec	Limits		
Total Organic Carbon	6.9	Quai		20.0		27.3	Qualifier	mg/L		-	102	80 - 120		-
									_	NI:	4 0 1	- ID. DC4	AANA/ 44	0.004
Lab Sample ID: 680-71407-1 MSD									C	ııer	ıı sampı	e ID: BSA		
THE RESERVE OF THE PROPERTY OF												Pren Ty	no. lo	tal/NA
Matrix: Water												i icp iy	pe. 10	
Matrix: Water Analysis Batch: 213429							мер						ре. 10	
Analysis Batch: 213429	Sample			Spike			MSD					% Rec.		RPD
	Sample Result			Spike Added			MSD Qualifier	Unit mg/L		D	% Rec		RPD 1	

SEP 2 2 2011

Client: Solutia Inc.

Analysis Batch: 212578

GC/MS VOA

EPA ARCHIVE DOCUMENT

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-71407-1	BSA-MW-1S-0811	Total/NA	Water	8260B	
680-71407-3	CPA-MW-2D-0811	Total/NA	Water	8260B	
680-71407-6	CPA-MW-1D-0811	Total/NA	Water	8260B	¥
LCS 680-212578/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-212578/5	Lab Control Sample Dup	Total/NA	Water	8260B	
MB 680-212578/7	Method Blank	Total/NA	Water	8260B	
nalysis Batch: 212580					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
680-71407-8	TB-1	Total/NA	Water	8260B	
LCS 680-212580/12	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-212580/13	Lab Control Sample Dup	Total/NA	Water	8260B	(6) (6) (8 8 3 65 7
MB 680-212580/15	Method Blank	Total/NA	Water	8260B	
nalysis Batch: 212817					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-71407-5	CPA-MW-2D0811-AD	Total/NA	Water	8260B	
LCS 680-212817/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-212817/5	Lab Control Sample Dup	Total/NA	Water	8260B	
MB 680-212817/8	Method Blank	Total/NA	Water	8260B	
nalysis Batch: 212983					
.ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
80-71445-5 MS	CPA-MW-5D-0811	Total/NA	Water	8260B	***
880-71445-5 MSD	CPA-MW-5D-0811	Total/NA	Water	8260B	
880-71445-7	BSA-MW-3D-0811	Total/NA	Water	8260B	
LCS 680-212983/5	Lab Control Sample	Total/NA	Water	8260B	8550 (85)
LCSD 680-212983/6	Lab Control Sample Dup	Total/NA	Water	8260B	
MB 680-212983/4	Method Blank	Total/NA	Water	8260B	
nalysis Batch: 212984					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-71445-1	BSA-MW-2D-0811	Total/NA	Water	8260B	
680-71445-3	CPA-MW-3D-0811	Total/NA	Water	8260B	
680-71445-5	CPA-MW-5D-0811	Total/NA	Water	8260B	
LCS 680-212984/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-212984/5	Lab Control Sample Dup	Total/NA	Water	8260B	
MB 680-212984/8	Method Blank	Total/NA	Water	8260B	
nalysis Batch: 213206					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-71493-1	BSA-MW-4D-0811	Total/NA	Water	8260B	
680-71493-7	TB-3	Total/NA	Water	8260B	
LCS 680-213206/11	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-213206/12	Lab Control Sample Dup	Total/NA	Water	8260B	
MB 680-213206/13	Method Blank	Total/NA	Water	8260B	
nalysis Batch: 213243					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
680-71445-9	BSA-MW-3D-0811-EB	Total/NA	Water	8260B	
680-71445-10	TB-2	Total/NA	Water	8260B	SEP. 22 2011
					11 1 / / / LUI

Client: Solutia Inc.

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

GC/MS VOA (Continued)

Analysis	Batch: 213243	(Continued)
----------	---------------	-------------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 680-213243/14	Lab Control Sample Dup	Total/NA	Water	8260B	
MB 680-213243/17	Method Blank	Total/NA	Water	8260B	

Analysis Batch: 213379

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-71493-3	CPA-MW-4D-0811	Total/NA	Water	8260B	
680-71493-5	BSA-MW-5D-0811	Total/NA	Water	8260B	
LCS 680-213379/8	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-213379/9	Lab Control Sample Dup	Total/NA	Water	8260B	*
MB 680-213379/11	Method Blank	Total/NA	Water	8260B	

GC/MS Semi VOA

Prep Batch: 212318

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-71407-1	BSA-MW-1S-0811	Total/NA	Water	3520C	
680-71407-3	CPA-MW-2D-0811	Total/NA	Water	3520C	
680-71407-5	CPA-MW-2D0811-AD	Total/NA	Water	3520C	
680-71407-6	CPA-MW-1D-0811	Total/NA	Water	3520C	9.9 8.8.8.8.8.8.8.9.9.3.30
680-71445-1	BSA-MW-2D-0811	Total/NA	Water	3520C	
680-71445-3	CPA-MW-3D-0811	Total/NA	Water	3520C	
680-71445-5	CPA-MW-5D-0811	Total/NA	Water	3520C	
680-71445-5 MS	CPA-MW-5D-0811	Total/NA	Water	3520C	
680-71445-5 MSD	CPA-MW-5D-0811	Total/NA	Water	3520C	
680-71445-7	BSA-MW-3D-0811	Total/NA	Water	3520C	
680-71445-9	BSA-MW-3D-0811-EB	Total/NA	Water	3520C	
680-71493-1	BSA-MW-4D-0811	Total/NA	Water	3520C	
680-71493-3	CPA-MW-4D-0811	Total/NA	Water	3520C	********
680-71493-5	BSA-MW-5D-0811	Total/NA	Water	3520C	
LCS 680-212318/19-A	Lab Control Sample	Total/NA	Water	3520C	
MB 680-212318/18-A	Method Blank	Total/NA	Water	3520C	9 (9)

Analysis Batch: 212469

EPA ARCHIVE DOCUMENT

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-71445-1	BSA-MW-2D-0811	Total/NA	Water	8270C	212318
680-71445-3	CPA-MW-3D-0811	Total/NA	Water	8270C	212318
680-71445-5	CPA-MW-5D-0811	Total/NA	Water	8270C	212318
680-71445-5 MS	CPA-MW-5D-0811	Total/NA	Water	8270C	212318
680-71445-5 MSD	CPA-MW-5D-0811	Total/NA	Water	8270C	212318
680-71445-7	BSA-MW-3D-0811	Total/NA	Water	8270C	212318
680-71445-9	BSA-MW-3D-0811-EB	Total/NA	Water	8270C	212318
LCS 680-212318/19-A	Lab Control Sample	Total/NA	Water	8270C	212318
MB 680-212318/18-A	Method Blank	Total/NA	Water	8270C	212318

Analysis Batch: 212664

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-71407-1	BSA-MW-1S-0811	Total/NA	Water	8270C	212318
680-71407-3	CPA-MW-2D-0811	Total/NA	Water	8270C	212318
680-71407-5	CPA-MW-2D0811-AD	Total/NA	Water	8270C	212318
680-71407-6	CPA-MW-1D-0811	Total/NA	Water	8270C	212318
680-71493-1	BSA-MW-4D-0811	Total/NA	Water	8270C	212318
680-71493-3	CPA-MW-4D-0811	Total/NA	Water	8270C	212318

Client: Solutia Inc.

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

GC/MS Semi VOA (Continued)

Analysis Batch: 212664 (Continue

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-71493-5	BSA-MW-5D-0811	Total/NA	Water	8270C	212318

GC VOA

Analysis Batch: 212627

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-71407-1	BSA-MW-1S-0811	Total/NA	Water	RSK-175	
680-71407-3	CPA-MW-2D-0811	Total/NA	Water	RSK-175	
680-71407-6	CPA-MW-1D-0811	Total/NA	Water	RSK-175	
680-71445-1	BSA-MW-2D-0811	Total/NA	Water	RSK-175	
680-71445-3	CPA-MW-3D-0811	Total/NA	Water	RSK-175	
680-71445-5	CPA-MW-5D-0811	Total/NA	Water	RSK-175	×
680-71445-7	BSA-MW-3D-0811	Total/NA	Water	RSK-175	
680-71493-1	BSA-MW-4D-0811	Total/NA	Water	RSK-175	
680-71493-3	CPA-MW-4D-0811	Total/NA	Water	RSK-175	
680-71493-5	BSA-MW-5D-0811	Total/NA	Water	RSK-175	
LCS 680-212627/14	Lab Control Sample	Total/NA	Water	RSK-175	
LCSD 680-212627/16	Lab Control Sample Dup	Total/NA	Water	RSK-175	
MB 680-212627/15	Method Blank	Total/NA	Water	RSK-175	

Analysis Batch: 212629

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-71407-1	BSA-MW-1S-0811	Total/NA	Water	RSK-175	
680-71407-3	CPA-MW-2D-0811	Total/NA	Water	RSK-175	
680-71407-6	CPA-MW-1D-0811	Total/NA	Water	RSK-175	
680-71445-1	BSA-MW-2D-0811	Total/NA	Water	RSK-175	£. I
680-71445-3	CPA-MW-3D-0811	Total/NA	Water	RSK-175	
680-71493-3	CPA-MW-4D-0811	Total/NA	Water	RSK-175	
LCS 680-212629/8	Lab Control Sample	Total/NA	Water	RSK-175	
LCSD 680-212629/10	Lab Control Sample Dup	Total/NA	Water	RSK-175	
MB 680-212629/9	Method Blank	Total/NA	Water	RSK-175	

Metals

Prep Batch: 212678

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-71407-1	BSA-MW-1S-0811	Total Recoverable	Water	3005A	
380-71407-1 MS	BSA-MW-1S-0811	Total Recoverable	Water	3005A	
880-71407-1 MSD	BSA-MW-1S-0811	Total Recoverable	Water	3005A	
580-71407-2	BSA-MW-1S-F(0.2)-0811	Dissolved	Water	3005A	5 5 45
880-71407-3	CPA-MW-2D-0811	Total Recoverable	Water	3005A	
80-71407-4	CPA-MW-2D-F(0.2)-0811	Dissolved	Water	3005A	
880-71407-6	CPA-MW-1D-0811	Total Recoverable	Water	3005A	8 9 B 8
80-71407-7	CPA-MW-1D-F(0.2)-0811	Dissolved	Water	3005A	
80-71445-1	BSA-MW-2D-0811	Total Recoverable	Water	3005A	
80-71445-2	BSA-MW-2D-F(0.2)-0811	Dissolved	Water	3005A	
880-71445-3	CPA-MW-3D-0811	Total Recoverable	Water	3005A	
80-71445-4	CPA-MW-3D-F(0.2)-0811	Dissolved	Water	3005A	
880-71445-5	CPA-MW-5D-0811	Total Recoverable	Water	3005A	*
880-71445-6	CPA-MW-5D-F(0.2)-0811	Dissolved	Water	3005A	
880-71445-7	BSA-MW-3D-0811	Total Recoverable	Water	3005A	SEP, 22 2011
880-71445-8	BSA-MW-3D-F(0.2)-0811	Dissolved	Water	3005A	11

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Metals (Continued)

Prep Batch: 212678 (Co	ontinued)
------------------------	-----------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-71493-1	BSA-MW-4D-0811	Total Recoverable	Water	3005A	**
680-71493-2	BSA-MW-4D-F(0.2)-0811	Dissolved	Water	3005A	
680-71493-3	CPA-MW-4D-0811	Total Recoverable	Water	3005A	*
680-71493-4	CPA-MW-4D-F(0.2)-0811	Dissolved	Water	3005A	
680-71493-5	BSA-MW-5D-0811	Total Recoverable	Water	3005A	
680-71493-6	BSA-MW-5D-F(0.2)-0811	Dissolved	Water	3005A	***
LCS 680-212678/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
MB 680-212678/1-A	Method Blank	Total Recoverable	Water	3005A	

Analysis Batch: 213761

Lab Sample ID Client Sa	mple ID	Prep Type	Matrix	Method	Prep Batch
680-71407-1 BSA-MW	-1S-0811	Total Recoverable	Water	6010B	212678
680-71407-1 MS BSA-MW-	-1S-0811	Total Recoverable	Water	6010B	212678
680-71407-1 MSD BSA-MW-	-1S-0811	Total Recoverable	Water	6010B	212678
680-71407-2 BSA-MW-	-1S-F(0.2)-0811	Dissolved	Water	6010B	212678
680-71407-3 CPA-MW	-2D-0811	Total Recoverable	Water	6010B	212678
680-71407-4 CPA-MW-	-2D-F(0.2)-0811	Dissolved	Water	6010B	212678
680-71407-6 CPA-MW	-1D-0811	Total Recoverable	Water	6010B	212678
680-71407-7 CPA-MW-	-1D-F(0.2)-0811	Dissolved	Water	6010B	212678
680-71445-1 BSA-MW-	-2D-0811	Total Recoverable	Water	6010B	212678
680-71445-2 BSA-MW-	-2D-F(0.2)-0811	Dissolved	Water	6010B	212678
680-71445-3 CPA-MW-	-3D-0811	Total Recoverable	Water	6010B	212678
680-71445-4 CPA-MW-	-3D-F(0.2)-0811	Dissolved	Water	6010B	212678
680-71445-5 CPA-MW-	-5D-0811	Total Recoverable	Water	6010B	212678
680-71445-6 CPA-MW-	-5D-F(0.2)-0811	Dissolved	Water	6010B	212678
680-71445-7 BSA-MW-	-3D-0811	Total Recoverable	Water	6010B	212678
680-71445-8 BSA-MW-	3D-F(0.2)-0811	Dissolved	Water	6010B	212678
680-71493-1 BSA-MW-	4D-0811	Total Recoverable	Water	6010B	212678
680-71493-2 BSA-MW-	4D-F(0.2)-0811	Dissolved	Water	6010B	212678
680-71493-3 CPA-MW-	4D-0811	Total Recoverable	Water	6010B	212678
680-71493-4 CPA-MW-	-4D-F(0.2)-0811	Dissolved	Water	6010B	212678
680-71493-5 BSA-MW-	5D-0811	Total Recoverable	Water	6010B	212678
680-71493-6 BSA-MW-	-5D-F(0.2)-0811	Dissolved	Water	6010B	212678
LCS 680-212678/2-A Lab Contr	ol Sample	Total Recoverable	Water	6010B	212678
MB 680-212678/1-A Method B	lank	Total Recoverable	Water	6010B	212678

General Chemistry

Analysis Batch: 212043

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-71407-1	BSA-MW-1S-0811	Total/NA	Water	310.1	
680-71407-3	CPA-MW-2D-0811	Total/NA	Water	310.1	
680-71407-6	CPA-MW-1D-0811	Total/NA	Water	310.1	
LCS 680-212043/3	Lab Control Sample	Total/NA	Water	310.1	
LCSD 680-212043/12	Lab Control Sample Dup	Total/NA	Water	310.1	
MB 680-212043/2	Method Blank	Total/NA	Water	310.1	

Analysis Batch: 212081

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-71407-1	BSA-MW-1S-0811	Total/NA	Water	353.2	
680-71407-1 MS	BSA-MW-1S-0811	Total/NA	Water	353.2	
680-71407-1 MSD	BSA-MW-1S-0811	Total/NA	Water	353.2	

Client: Solutia Inc.

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Analysis Batch: 212081 (Continued)				
*				222	
Lab Sample ID	Client Sample ID	Prep Type	Matrix Water	Method 353.2	Prep Batc
680-71407-3	CPA-MW-2D-0811	Total/NA			
680-71407-6	CPA-MW-1D-0811	Total/NA	Water	353.2	
LCS 680-212081/15	Lab Control Sample	Total/NA	Water	353.2	0 00 K
MB 680-212081/14	Method Blank	Total/NA	Water	353.2	
Analysis Batch: 212187					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
680-71445-1	BSA-MW-2D-0811	Total/NA	Water	310.1	
680-71445-3	CPA-MW-3D-0811	Total/NA	Water	310.1	
680-71445-5	CPA-MW-5D-0811	Total/NA	Water	310.1	
680-71445-5 DU	CPA-MW-5D-0811	Total/NA	Water	310.1	
680-71445-7	BSA-MW-3D-0811	Total/NA	Water	310.1	1.4
LCS 680-212187/3	Lab Control Sample	Total/NA	Water	310.1	
LCSD 680-212187/28	Lab Control Sample Dup	Total/NA	Water	310.1	**
MB 680-212187/2	Method Blank	Total/NA	Water	310.1	
Analysis Batch: 212333					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
680-71445-1	BSA-MW-2D-0811	Total/NA	Water	353.2	
680-71445-3	CPA-MW-3D-0811	Total/NA	Water	353.2	
680-71445-5	CPA-MW-5D-0811	Total/NA	Water	353.2	
680-71445-7	BSA-MW-3D-0811	Total/NA	Water	353,2	
LCS 680-212333/15	Lab Control Sample	Total/NA	Water	353.2	
MB 680-212333/14	Method Blank	Total/NA	Water	353.2	
Analysis Batch: 212334					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
680-71493-1	BSA-MW-4D-0811	Total/NA	Water	353.2	
680-71493-3	CPA-MW-4D-0811	Total/NA	Water	353.2	
680-71493-5	BSA-MW-5D-0811	Total/NA	Water	353.2	
LCS 680-212334/15	Lab Control Sample	Total/NA	Water	353.2	
MB 680-212334/14	Method Blank	Total/NA	Water	353.2	
Analysis Batch: 212405					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batci
680-71493-1	BSA-MW-4D-0811	Total/NA	Water	310.1	
680-71493-3	CPA-MW-4D-0811	Total/NA	Water	310.1	
680-71493-5	BSA-MW-5D-0811	Total/NA	Water	310.1	
LCS 680-212405/3	Lab Control Sample	Total/NA	Water	310.1	* *
LCSD 680-212405/11	Lab Control Sample Dup	Total/NA	Water	310.1	
MB 680-212405/2	Method Blank	Total/NA	Water	310.1	
Analysis Batch: 212706					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
680-71407-2	BSA-MW-1S-F(0.2)-0811	Dissolved	Water	415.1	
680-71407-4	CPA-MW-2D-F(0.2)-0811	Dissolved	Water	415.1	
680-71407-7	CPA-MW-1D-F(0.2)-0811	Dissolved	Water	415.1	
680-71445-2	BSA-MW-2D-F(0.2)-0811	Dissolved	Water	415.1	18
680-71445-2 DU	BSA-MW-2D-F (0.2)-0811	Dissolved	Water	415.1	
680-71445-4		Dissolved	Water	415.1	
ticit = / 144;1-4	CPA-MW-3D-F(0.2)-0811	DISSUIVEU	vvale	4 IJ. I	
680-71445-6	CPA-MW-5D-F(0.2)-0811	Dissolved	Water	415.1	

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

General Chemistry (Continued)

Analysis	Batch:	212706	(Continued)	
----------	--------	--------	-------------	--

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-71493-2	BSA-MW-4D-F(0.2)-0811	Dissolved	Water	415.1	
680-71493-4	CPA-MW-4D-F(0.2)-0811	Dissolved	Water	415.1	
680-71493-6	BSA-MW-5D-F(0.2)-0811	Dissolved	Water	415.1	

Analysis Batch: 212944

Committee that he described to	ACCUPATION AND ADMINISTRATION OF THE PROPERTY					
680-71493-6	BSA-MW-5D-F(0.2)-0811	Dissolved	Water	415.1		
Analysis Batch: 212	2944					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	記憶
680-71407-1	BSA-MW-1S-0811	Total/NA	Water	325.2		(P13)
680-71407-1 MS	BSA-MW-1S-0811	Total/NA	Water	325.2		6.3
680-71407-1 MSD	BSA-MW-1S-0811	Total/NA	Water	325.2		07503
680-71407-3	CPA-MW-2D-0811	Total/NA	Water	325.2		F-1
680-71407-3 DU	CPA-MW-2D-0811	Total/NA	Water	325.2		1.584
680-71407-6	CPA-MW-1D-0811	Total/NA	Water	325,2		1.50
680-71445-1	BSA-MW-2D-0811	Total/NA	Water	325.2		SUB-ON
680-71445-3	CPA-MW-3D-0811	Total/NA	Water	325.2		111
680-71445-5	CPA-MW-5D-0811	Total/NA	Water	325.2		HOLDING TO
680-71445-7	BSA-MW-3D-0811	Total/NA	Water	325.2	ONDERSON SIN SIN SIN	100
680-71493-1	BSA-MW-4D-0811	Total/NA	Water	325.2		Storel
680-71493-3	CPA-MW-4D-0811	Total/NA	Water	325.2		100
680-71493-5	BSA-MW-5D-0811	Total/NA	Water	325.2		6.54
LCS 680-212944/6	Lab Control Sample	Total/NA	Water	325.2		171
MB 680-212944/1	Method Blank	Total/NA	Water	325.2		Milne
L						4.4

Analysis Batch: 212968

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
680-71407-1	BSA-MW-1S-0811	Total/NA	Water	375.4	
680-71407-1 MS	BSA-MW-1S-0811	Total/NA	Water	375.4	
680-71407-1 MSD	BSA-MW-1S-0811	Total/NA	Water	375.4	
680-71407-3	CPA-MW-2D-0811	Total/NA	Water	375.4	
680-71407-3 DU	CPA-MW-2D-0811	Total/NA	Water	375.4	
680-71407-6	CPA-MW-1D-0811	Total/NA	Water	375.4	
680-71445-1	BSA-MW-2D-0811	Total/NA	Water	375.4	
680-71445-3	CPA-MW-3D-0811	Total/NA	Water	375.4	
680-71445-5	CPA-MW-5D-0811	Total/NA	Water	375.4	
680-71445-7	BSA-MW-3D-0811	Total/NA	Water	375.4	
680-71493-1	BSA-MW-4D-0811	Total/NA	Water	375.4	
680-71493-3	CPA-MW-4D-0811	Total/NA	Water	375.4	
680-71493-5	BSA-MW-5D-0811	Total/NA	Water	375.4	19341 B B 3604 6 6 6
LCS 680-212968/2	Lab Control Sample	Total/NA	Water	375.4	
MB 680-212968/1	Method Blank	Total/NA	Water	375.4	

Analysis Batch: 212990

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-71445-1	BSA-MW-2D-0811	Total/NA	Water	415.1	
680-71445-3	CPA-MW-3D-0811	Total/NA	Water	415.1	
680-71445-5	CPA-MW-5D-0811	Total/NA	Water	415.1	
680-71445-7	BSA-MW-3D-0811	Total/NA	Water	415.1	
LCS 680-212990/4	Lab Control Sample	Total/NA	Water	415.1	
MB 680-212990/2	Method Blank	Total/NA	Water	415.1	

Analysis Batch: 213429

L	ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
e	80-71407-1	BSA-MW-1S-0811	Total/NA	Water	415.1	

Client: Solutia Inc.

Project/Site: WGK LTM - 3Q11 - AUG 2011

.. TestAmerica Job ID: 680-71407-1

SDG: KPS065

General Chemistry (Continued)

Analysis Batch: 213429 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-71407-1 MS	BSA-MW-1S-0811	Total/NA	Water	415.1	
680-71407-1 MSD	BSA-MW-1S-0811	Total/NA	Water	415.1	
680-71407-3	CPA-MW-2D-0811	Total/NA	Water	415.1	
680-71407-6	CPA-MW-1D-0811	Total/NA	Water	415.1	
680-71493-1	BSA-MW-4D-0811	Total/NA	Water	415.1	
680-71493-3	CPA-MW-4D-0811	Total/NA	Water	415.1	Se (41) Se() 191
680-71493-5	BSA-MW-5D-0811	Total/NA	Water	415.1	
LCS 680-213429/36	Lab Control Sample	Total/NA	Water	415.1	
MB 680-213429/35	Method Blank	Total/NA	Water	415.1	

11

Client: Solutia Inc.

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Client Sample ID: BSA-MW-1S-0811

Date Collected: 08/15/11 10:40 Date Received: 08/16/11 09:25 Lab Sample ID: 680-71407-1

Matrix: Water

	Batch	Batch		Dil	Init	ial	Fin	al	Batch		Prepared		
Prep Type	Type	Method	Run	Factor	Amo	unt	Amo	unt	Number		Or Analyzed	Analyst	Lab
Total/NA .	Analysis	8260B		5000	5	mL	5	mL	212578		08/22/11 16:28	RB	TAL SAV
Total/NA	Prep	3520C			500.4	mL	0.5	mL	212318		08/19/11 14:58	RBS	TAL SAV
Total/NA	Analysis	8270C		1					212664		08/23/11 16:56	CRH	TAL SAV
Total/NA	Analysis	RSK-175		1	17000	uL	17	mL	212627	8	08/22/11 18:43	SMC	TAL SAV
Total/NA	Analysis	RSK-175		1	17000	uL	17	mL	212629		08/22/11 18:43	SMC	TAL SAV
Total Recoverable	Prep	3005A			50	mL	50	mL	212678		08/23/11 16:14	RAM	TAL SAV
Total Recoverable	Analysis	6010B		1					213761		09/02/11 05:48	BCB	TAL SAV
Total/NA	Analysis	310.1		1	30	mL	30	mL	212043		08/16/11 15:36	TR	TAL SAV
Total/NA	Analysis	353.2		1		mL	2	mL	212081		08/16/11 17:31	JR-	TAL SAV
Total/NA	Analysis	325.2		5	2	mL	2	mL	212944		08/25/11 15:35	JR	TAL SAV
Total/NA	Analysis	375.4		10	2	mL	2	mL	212968		08/25/11 16:50	JR	TAL SAV
Total/NA	Analysis	415.1		1	25	mL	25	mL	213429		08/30/11 17:03	TH	TAL SAV

Client Sample ID: BSA-MW-1S-F(0.2)-0811

Date Collected: 08/15/11 10:40

Date Received: 08/16/11 09:25

Lab Sample ID: 680-71407-2

Matrix: Water

MIN.	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	Or Analyzed	Analyst	Lab
Dissolved	Prep	3005A		-	50 mL	50 mL	212678	08/23/11 16:14	RAM	TAL SAV
Dissolved	Analysis	6010B		1			213761	09/02/11 06:15	BCB	TAL SAV
Dissolved	Analysis	415.1		1			212706	08/23/11 08:18	TH	TAL SAV

Client Sample ID: CPA-MW-2D-0811

Date Collected: 08/15/11 13:55

Date Received: 08/16/11 09:25

JS EPA ARCHIVE DOCUMENT

Lab	Sample	ID:	680-71407-3

Matrix: Water

	Batch	Batch		Dil	Initi	ial	Fin	al	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amo	unt	Amo	unt	Number	Or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		200	5	mL	5	mL	212578	08/22/11 16:57	RB	TAL SAV
Total/NA	Prep	3520C			919.2	mL	1	mL	212318	08/19/11 14:58	RBS	TAL SAV
Total/NA	Analysis	8270C		1		×			212664	08/23/11 17:22	CRH	TAL SAV
Total/NA	Analysis	RSK-175		1	17000	uL	17	mL	212627	08/22/11 18:56	SMC	TAL SAV
Total/NA	Analysis	RSK-175		1	17000	uL	17	mL	212629	08/22/11 18:56	SMC	TAL SAV
Total Recoverable	Prep	3005A			50	mL	50	mL	212678	08/23/11 16:14	RAM	TAL SAV
Total Recoverable	Analysis	6010B		1					213761	09/02/11 06:20	BCB	TAL SAV
Total/NA	Analysis	310.1		1	30	mL	30	mL	212043	08/16/11 15:45	TR	TAL SAV
Total/NA	Analysis	353.2		1	2	mL	2	mL	212081	08/16/11 17:34	JR	TAL SAV
Total/NA	Analysis	325.2		1	2	mL	2	mL	212944	08/25/11 15:32	JR	TAL SAV
Total/NA	Analysis	375.4		1	2	mL	2	mL	212968	08/25/11 16:05	JR	TAL SAV
Total/NA	Analysis	415.1		1	25	mL	25	mL	213429	08/30/11 17:44	TH	TAL SAV

SEP 2 2 2011

TestAmerica Savannah

Page 64 of 77

Client: Solutia Inc.

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Client Sample ID: CPA-MW-2D-F(0.2)-0811

Date Collected: 08/15/11 13:55 Date Received: 08/16/11 09:25 Lab Sample ID: 680-71407-4

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	Or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			50 mL	50 mL	212678	08/23/11 16:14	RAM	TAL SAV
Dissolved	Analysis	6010B		1			213761	09/02/11 06:25	BCB	TAL SAV
Dissolved	Analysis	415.1		1			212706	08/23/11 08:18	TH	TAL SAV

Client Sample ID: CPA-MW-2D--0811-AD

Date Collected: 08/15/11 13:55 Date Received: 08/16/11 09:25 Lab Sample ID: 680-71407-5

Matrix: Water

		Batch	Batch	Dil	Initial	Final	Batch	Prepared		
100	Prep Type	Туре	_Method	Run Factor	-Amount-	Amount	Number	Or Analyzed	Analyst	Lab
	Total/NA	Analysis	8260B	200	5 mL	5 mL	212817	08/23/11 18:30	RB	TAL SAV
	Total/NA	Prep	3520C		1022.2 mL	1 mL	212318	08/19/11 14:58	RBS	TAL SAV
	Total/NA	Analysis	8270C	1			212664	08/23/11 17:49	CRH	TAL SAV

Client Sample ID: CPA-MW-1D-0811

Date Collected: 08/15/11 15:35

Date Received: 08/16/11 09:25

Lab Sample ID: 680-71407-6

Matrix: Water

	Batch	Batch		Dil	Init	ial	Fin	al	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amo	unt	Amo	unt	Number	Or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		200	5	mL	5	mL	212578	08/22/11 17:55	RB	TAL SAV
Total/NA	Prep	3520C			1044.1	mL	1	mL	212318	08/19/11 14:58	RBS	TAL SAV
Total/NA	Analysis	8270C		5					212664	08/23/11 18:16	CRH	TAL SAV
Total/NA	Analysis	RSK-175		1	17000	uL	17	mL	212627	08/22/11 19:09	SMC	TAL SAV
Total/NA	Analysis	RSK-175		1	17000	uL	17	mL	212629	08/22/11 19:09	SMC	TAL SAV
Total Recoverable	Prep	3005A			50	mL	50	mL	212678	08/23/11 16:14	RAM	TAL SAV
Total Recoverable	Analysis	6010B		1					213761	09/02/11 06:41	BCB	TAL SAV
Total/NA	Analysis	310.1		1	30	mL	30	mL	212043	08/16/11 15:58	TR	TAL SAV
Total/NA	Analysis	353.2		10	2	mL	2	mL	212081	08/16/11 17:38	JR	TAL SAV
Total/NA	Analysis	325.2		2	2	mL	2	mL	212944	08/25/11 15:38	JR	TAL SAV
Total/NA	Analysis	375.4		1	2	mL	2	mL	212968	08/25/11 16:06	JR	TAL SAV
Total/NA	Analysis	415.1		10	25	mL	25	mL	213429	08/30/11 17:58	TH	TAL SAV

Client Sample ID: CPA-MW-1D-F(0.2)-0811

Date Collected: 08/15/11 15:35

Date Received: 08/16/11 09:25

Lab Sample ID: 680-71407-7

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	Or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			50 mL	50 mL	212678	08/23/11 16:14	RAM	TAL SAV
Dissolved	Analysis	6010B		1			213761	09/02/11 06:46	BCB	TAL SAV
Dissolved	Analysis	415.1		25			212706	08/23/11 08:18	TH	TAL SAV

SEP 22 2011

TestAmerica Savannah

EPA ARCHIVE DOCUMENT

Client: Solutia Inc.

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Client Sample ID: TB-1

Date Collected: 08/15/11 00:00 Date Received: 08/16/11 09:25 Lab Sample ID: 680-71407-8

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	Or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	212580	08/22/11 13:50	RB	TAL SAV

Client Sample ID: BSA-MW-2D-0811

Date Collected: 08/16/11 09:20 Date Received: 08/17/11 09:19 Lab Sample ID: 680-71445-1

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Type	Method	Run	Factor	Amount	Amount	Number	Or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		2000	5 mL	5 mL	212984	08/25/11 17:15	RB	TAL SAV
Total/NA	Prep	_3520C	- XMC301 - 4	***	.1048.1 mL	1_mL	212318	08/19/11 14:58	RBS	TAL SAV
Total/NA	Analysis	8270C		1			212469	08/22/11 15:57	CRH	TAL SAV
Total/NA	Analysis	RSK-175		1	17000 uL	17 mL	212627	08/22/11 17:52	SMC	TAL SAV
Total/NA	Analysis	RSK-175		1	17000 uL	17 mL	212629	08/22/11 17:52	SMC	TAL SAV
Total Recoverable	Prep	3005A			50 mL	50 mL	212678	08/23/11 16:14	RAM	TAL SAV
Total Recoverable	Analysis	6010B		1			213761	09/02/11 06:51	BCB	TAL SAV
Total/NA	Analysis	310.1		1	30 mL	30 mL	212187	08/17/11 17:40	TR	TAL SAV
Total/NA	Analysis	353.2		1	2 mL	2 mL	212333	08/17/11 15:04	JR	TAL SAV
Total/NA	Analysis	325.2		2	2 mL	2 mL	212944	08/25/11 15:38	JR	TAL SAV
Total/NA	Analysis	375.4		1	2 mL	2 mL	212968	08/25/11 16:06	JR	TAL SAV
Total/NA	Analysis	415.1		1	25 mL	25 mL	212990	08/25/11 11:17	TH	TAL SAV

Client Sample ID: BSA-MW-2D-F(0.2)-0811

Date Collected: 08/16/11 09:20

Date Received: 08/17/11 09:19

EPA ARCHIVE DOCUMENT

Lab Sample ID: 680-71445-2

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	Or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			50 mL	50 mL	212678	08/23/11 16:14	RAM	TAL SAV
Dissolved	Analysis	6010B		1			213761	09/02/11 06:56	BCB	TAL SAV
Dissolved	Analysis	415.1		1			212706	08/23/11 08:18	TH	TAL SAV

Client Sample ID: CPA-MW-3D-0811

Date Collected: 08/16/11 10:50

Date Received: 08/17/11 09:19

Lab Sample ID: 680-71445-3

Matrix: Water

	Batch	Batch		Dil	Initi	al	Fin	al	Batch	Prepared		
Ргер Туре	Type	Method	Run	Factor	Amo	unt	Amo	unt	Number	Or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		5	5	mL	5	mL	212984	08/25/11 17:44	RB	TAL SAV
Total/NA	Prep	3520C			1051.6	mL	1	mL	212318	08/19/11 14:58	RBS	TAL SAV
Total/NA	Analysis	8270C		1					212469	08/22/11 16:25	CRH	TAL SAV
Total/NA	Analysis	RSK-175		1	17000	uL	17	mL	212627	08/22/11 18:05	SMC	TAL SAV
Total/NA	Analysis	RSK-175		1	17000	uL	17	mL	212629	08/22/11 18:05	SMC	TAL SAV
Total Recoverable	Prep	3005A			50	mL	50	mL	212678	08/23/11 16:14	RAM	TAL SAV
Total Recoverable	Analysis	6010B		1					213761	09/02/11 07:02	BCB	TAL SAV
Total/NA	Analysis	310.1		1	30	mL	30	mL	212187	08/17/11 17:48	TR	TAL SAV
Total/NA	Analysis	353.2		1	2	mL	2	mL	212333	08/17/11 15:07	JR	TAL SAV

EPA ARCHIVE DOCUMENT

Client: Solutia Inc.

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Lab Sample ID: 680-71445-3 Client Sample ID: CPA-MW-3D-0811

Date Collected: 08/16/11 10:50 Date Received: 08/17/11 09:19

Matrix: Water

		Batch	Batch		Dil	Init	ial	F	inal	Batch	Prepared		
	Prep Type	Туре	Method	Run	Factor	Amo	unt	An	ount	Number	Or Analyzed	Analyst	Lab
	Total/NA	Analysis	325.2		2	2	mL		2 mL	212944	08/25/11 15:38	JR	TAL SAV
Ì	Total/NA	Analysis	375.4		1	2	mL		2 mL	212968	08/25/11 16:07	JR	TAL SAV
	Total/NA	Analysis	415.1		1	25	mL	2	5 mL	212990	08/25/11 11:34	TH	TAL SAV

Client Sample ID: CPA-MW-3D-F(0.2)-0811

Lab Sample ID: 680-71445-4

Matrix: Water

Date Collected: 08/16/11 10:50 Date Received: 08/17/11 09:19

-	3.5	Batch	Batch			Dil	Initial	Final	Batch	Prepared			
	Prep Type	Туре	Method	2000	Run	Factor	Amount	Amount	Number	Or Analyzed	Analyst	Lab	
	Dissolved	Prep	3005A				50 mL	50 mL	212678	08/23/11 16:14	RAM	TAL SAV	
	Dissolved	Analysis	6010B			1			213761	09/02/11 07:07	BCB	TAL SAV	
	Dissolved	Analysis	415.1			1			212706	08/23/11 08:18	TH	TAL SAV	

Client Sample ID: CPA-MW-5D-0811

Lab Sample ID: 680-71445-5

Matrix: Water

Date Collected: 08/16/11 13:05 Date Received: 08/17/11 09:19

Prep Type	Batch Type	Batch Method	Run	Dil Factor	lnit Amo		Fin Amo		Batch Number	Prepared Or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		20	5	mL	5	mL	212984	08/25/11 18:13	RB	TAL SAV
Total/NA	Prep	3520C			1049.8	mL	1	mL	212318	08/19/11 14:58	RBS	TAL SAV
Total/NA	Analysis	8270C		1					212469	08/22/11 16:53	CRH	TAL SAV
Total/NA	Analysis	RSK-175		1	17000	uL	17	mL	212627	08/22/11 18:17	SMC	TAL SAV
Total Recoverable	Prep	3005A			50	mL	50	mL	212678	08/23/11 16:14	RAM	TAL SAV
Total Recoverable	Analysis	6010B		1					213761	09/02/11 07:12	BCB	TAL SAV
Total/NA	Analysis	310.1		1	30	mL	30	mL	212187	08/17/11 17:56	TR	TAL SAV
Total/NA	Analysis	353.2		1	2	mL	2	mL	212333	08/17/11 15:09	JR	TAL SAV
Total/NA	Analysis	325.2		5	2	mL	2	mL	212944	08/25/11 15:38	JR	TAL SAV
Total/NA	Analysis	375.4		50	2	mL	2	mL	212968	08/25/11 16:49	JR	TAL SAV
Total/NA	Analysis	415.1		1	25	mL	25	mL	212990	08/25/11 11:53	TH	TAL SAV

Client Sample ID: CPA-MW-5D-F(0.2)-0811

Lab Sample ID: 680-71445-6

Matrix: Water

Date Collected: 08/16/11 13:05 Date Received: 08/17/11 09:19

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	Or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			50 mL	50 mL	212678	08/23/11 16:14	RAM	TAL SAV
Dissolved	Analysis	6010B		1			213761	09/02/11 07:17	BCB	TAL SAV
Dissolved	Analysis	415.1		1			212706	08/23/11 08:18	TH	TAL SAV

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Client Sample ID: BSA-MW-3D-0811 Lab Sample ID: 680-71445-7

Date Collected: 08/16/11 14:55 Date Received: 08/17/11 09:19 Matrix: Water

	Batch	Batch		Dil	Init	ial	Fin	al	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amo	unt	Amo	unt	Number	Or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		10	5	mL	5	mL	212983	08/25/11 17:58	RB	TAL SAV
Total/NA	Prep	3520C			1044.1	mL	1	mL	212318	08/19/11 14:58	RBS	TAL SAV
Total/NA	Analysis	8270C		1					212469	08/22/11 17:22	CRH	TAL SAV
Total/NA	Analysis	RSK-175		1	17000	uL	17	mL	212627	08/22/11 18:30	SMC	TAL SAV
Total Recoverable	Prep	3005A			50	mL	50	mL	212678	08/23/11 16:16	RAM	TAL SAV
Total Recoverable	Analysis	6010B		1					213761	09/02/11 07:22	BCB	TAL SAV
Total/NA	Analysis	310.1		1	30	mL	30	mL	212187	08/17/11 18:19	TR	TAL SAV
Total/NA	Analysis	353.2		1	2	mL	2	mL	212333	08/17/11 15:10	JR	TAL SAV
 Total/NA	Analysis	325.2	1 11 (00)	1	2-	-mL	2	mL-	212944	-08/25/11 15:32	JR-	TAL SAV
Total/NA	Analysis	375.4		10	2	mL	2	mL	212968	08/25/11 16:49	JR	TAL SAV
Total/NA	Analysis	415.1		1	25	mL	25	mL	212990	08/25/11 12:07	TH	TAL SAV

Client Sample ID: BSA-MW-3D-F(0.2)-0811

Date Collected: 08/16/11 14:55

Date Received: 08/17/11 09:19

Lab Sample ID: 680-71445-8

Matrix: Water

	Batch	Batch		Dil	Initi	al	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amo	unt	Amount	Number	Or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			50	mL	50 mL	212678	08/23/11 16:16	RAM	TAL SAV
Dissolved	Analysis	6010B		1				213761	09/02/11 07:28	BCB	TAL SAV
Dissolved	Analysis	415.1		1				212706	08/23/11 08:18	TH	TAL SAV

Client Sample ID: BSA-MW-3D-0811-EB

Date Collected: 08/16/11 16:05

Date Received: 08/17/11 09:19

Lab Sample ID: 680-7144	5-9
-------------------------	-----

Matrix: Water

Prep Type Total/NA	Batch Type Analysis	Method 8260B	Run	Dil Factor	Initial Amount 5 mL	Final Amount 5 mL	Batch Number 213243	Prepared Or Analyzed 08/26/11 18:33	Analyst RB	Lab TAL SAV
Total/NA Total/NA	Prep Analysis	3520C 8270C		1	1028.4 mL	1 mL	212318 212469	08/19/11 14:58 08/22/11 17:50	RBS CRH	TAL SAV TAL SAV

Client Sample ID: TB-2

Date Collected: 08/16/11 00:00

Date Received: 08/17/11 09:19

Lab Sampl	е	ID:	680	-71	445-10)
-----------	---	-----	-----	-----	--------	---

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	Or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1 .	5 mL	5 mL	213243	08/26/11 17:06	RB	TAL SAV

Client Sample ID: BSA-MW-4D-0811

Date Collected: 08/17/11 09:50 Date Received: 08/18/11 09:37

Lab Sample ID: 680-71493-1 Matrix: Water

Dil Batch Batch Initial Final Batch Prepared Prep Type Method Factor Amount Amount Number Or Analyzed Type Run Analyst Lab Total/NA

Analysis 8260B 20 5 mL 5 mL 213206 08/28/11 17:07 **AJMC** TAL SAV

Client: Solutia Inc.

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Client Sample ID: BSA-MW-4D-0811 Lab Sample ID: 680-71493-1

Date Collected: 08/17/11 09:50 Date Received: 08/18/11 09:37

Matrix: Water

		Batch	Batch		Dil	Init	ial	Fi	nal	Batch	Prepared		
	Prep Type	Туре	Method	Run	Factor	Amo	unt	Am	ount	Number	Or Analyzed	Analyst	Lab
IJ	Total/NA	Prep	3520C			1047.0	mL	1	mL	212318	08/19/11 14:58	RBS	TAL SAV
	Total/NA	Analysis	8270C		1					212664	08/23/11 18:43	CRH	TAL SAV
	Total/NA	Analysis	RSK-175		1	17000	uL	17	mL	212627	08/22/11 19:21	SMC	TAL SAV
	Total Recoverable	Prep	3005A			50	mL	50	mL	212678	08/23/11 16:16	RAM	TAL SAV
	Total Recoverable	Analysis	6010B		1					213761	09/02/11 07:43	BCB	TAL SAV
1	Total/NA	Analysis	353.2		1	2	mL	2	mL	212334	08/18/11 15:44	JR	TAL SAV
	Total/NA	Analysis	310.1		1	30	mL	30	mL	212405	08/18/11 20:45	TR	TAL SAV
	Total/NA	Analysis	325.2		2	2	mL	2	mL	212944	08/25/11 15:38	JR	TAL SAV
	Total/NA · · · · ·	Analysis -	-375.4	(a)wa	-5 -	2-	mL	2	-mL	212968	-08/25/11-16:44	JR-	TAL SAV
	Total/NA	Analysis	415.1		1	25	mL	25	mL	213429	08/30/11 18:13	TH	TAL SAV

Client Sample ID: BSA-MW-4D-F(0.2)-0811

Lab Sample ID: 680-71493-2

Matrix: Water

Batch Batch Dil Initial Final Batch Prepared Prep Type Type Method Run Factor Amount Amount Number Or Analyzed Analyst Lab Dissolved 3005A 50 mL 50 mL 212678 08/23/11 16:16 RAM TAL SAV Dissolved Analysis 6010B 213761 09/02/11 07:49 TAL SAV Dissolved 212706 08/23/11 08:18 TAL SAV Analysis 415.1 TH

Client Sample ID: CPA-MW-4D-0811

Date Collected: 08/17/11 11:05

Date Received: 08/18/11 09:37

Lab Sample ID: 680-71493-3

Matrix: Water

_	Batch	Batch		Dil	Init	ial	Fin	al	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amo	unt	Amo	unt	Number	Or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B	- 1	2	5	mL	5	mL	213379	08/30/11 14:31	AJMC	TAL SAV
Total/NA	Prep	3520C			1046.9	mL	1	mL	212318	08/19/11 14:58	RBS	TAL SAV
Total/NA	Analysis	8270C		2		ř			212664	08/23/11 19:09	CRH	TAL SAV
Total/NA	Analysis	RSK-175		1	17000	uL	17	mL	212627	08/22/11 19:34	SMC	TAL SAV
Total/NA	Analysis	RSK-175		1	17000	uL	17	mL	212629	08/22/11 19:34	SMC	TAL SAV
Total Recoverable	Prep	3005A			50	mL	50	mL	212678	08/23/11 16:16	RAM	TAL SAV
Total Recoverable	Analysis	6010B		1					213761	09/02/11 07:54	BCB	TAL SAV
Total/NA	Analysis	353.2		1	2	mL	2	mL	212334	08/18/11 15:45	JR	TAL SAV
Total/NA	Analysis	310.1		1	30	mL	30	mL	212405	08/18/11 20:57	TR	TAL SAV
Total/NA	Analysis	325.2		5	2	mL	2	mL	212944	08/25/11 15:44	JR	TAL SAV
Total/NA	Analysis	375.4		1	2	mL	2	mL	212968	08/25/11 16:17	JR	TAL SAV
Total/NA	Analysis	415.1		1	25	mL	25	mL	213429	08/30/11 18:29	TH	TAL SAV

TestAmerica Savannah

EPA ARCHIVE DOCUMENT Date Collected: 08/17/11 09:50 Date Received: 08/18/11 09:37

Page 69 of 77

Client: Solutia Inc.

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Client Sample ID: CPA-MW-4D-F(0.2)-0811 Lab Sample ID: 680-71493-4

Date Collected: 08/17/11 11:05 Date Received: 08/18/11 09:37

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	Or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			50 mL	50 mL	212678	08/23/11 16:16	RAM	TAL SAV
Dissolved	Analysis	6010B		1			213761	09/02/11 07:59	BCB	TAL SAV
Dissolved	Analysis	415.1		1			212706	08/23/11 08:18	TH	TAL SAV

Lab Sample ID: 680-71493-5 Client Sample ID: BSA-MW-5D-0811

Date Collected: 08/17/11 13:10 Date Received: 08/18/11 09:37 Matrix: Water

	Batch	Batch		Dil	Init	ial	Fin	al	Batch	Prepared		
Prep Type	Ty pe	Method	Run	Factor	Amount		Amo	unt	-Number	Or Analyzed	- Analyst	-Lab
Total/NA	Analysis	8260B		10	5	mL	5	mL	213379	08/30/11 15:36	AJMC	TAL SAV
Total/NA	Prep	3520C			1054.5	mL	1	mL	212318	08/19/11 14:58	RBS	TAL SAV
Total/NA	Analysis	8270C		1					212664	08/23/11 19:36	CRH	TAL SAV
Total/NA	Analysis	RSK-175		1	17000	uL	17	mL	212627	08/22/11 19:47	SMC	TAL SAV
Total Recoverable	Prep	3005A			50	mL	50	mL	212678	08/23/11 16:16	RAM	TAL SAV
Total Recoverable	Analysis	6010B		1					213761	09/02/11 08:04	BCB	TAL SAV
Total/NA	Analysis	353.2		1	2	mL	2	mL	212334	08/18/11 15:46	JR	TAL SAV
Total/NA	Analysis	310.1		1	30	mL	30	mL	212405	08/18/11 21:07	TR	TAL SAV
Total/NA	Analysis	325.2		5	2	mL	2	mL	212944	08/25/11 15:44	JR	TAL SAV
Total/NA	Analysis	375.4		20	2	mL	2	mL	212968	08/25/11 16:52	JR	TAL SAV
Total/NA	Analysis	415.1		1	25	mL	25	mL	213429	08/30/11 18:46	TH	TAL SAV

Client Sample ID: BSA-MW-5D-F(0.2)-0811 Lab Sample ID: 680-71493-6

Date Collected: 08/17/11 13:10

Date Received: 08/18/11 09:37

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	Or Analyzed	Analyst	Lab
Dissolved	Prep	3005A	7 7	_	50 mL	50 mL	212678	08/23/11 16:16	RAM	TAL SAV
Dissolved	Analysis	6010B		1			213761	09/02/11 08:10	BCB	TAL SAV
Dissolved	Analysis	415.1		1			212706	08/23/11 08:18	TH	TAL SAV

Client Sample ID: TB-3 Lab Sample ID: 680-71493-7 Date Collected: 08/17/11 00:00

Date Received: 08/18/11 09:37

Matrix: Water

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number Or Analyzed Analyst Lab Total/NA Analysis 8260B 5 mL 5 mL 213206 08/28/11 14:54 AJMC TAL SAV

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

SEP 22 2011

TestAmerica Savannah

Page 70 of 77

Savannah

5102 LaRoche Avenue

Chain of Custody Record

TestAmerica

Savannah, GA 31404 phone 912.354.7858 fax 912.352.0165 TestAmerica Laboratories, Inc. COC No: Client Contact Project Manager: Dave Palmer Site Contact: Nathan McNurlen Tel/Fax: (314) 743-4154 Lab Contact: Lidya Gulizia **URS** Corporation Carrier: COCs 1001 Highlands Plaza Drive West, Suite 300 Analysis Turnaround Time Job No. St. Louis, MO 63110 Calendar (C) or Work Days (W) 21562682.00001 (314) 429-0100 Phone TAT if different from Below (X) SDG No. (314) 429-0462 FAX 2 weeks Project Name: 3Q11 LTM GW Sampling I week Site: Solutia WG Krummrich Facility 2 days PO# 1 day Sample Sample Sample # of Cont. Date Time Matrix Sample Identification Type Sample Specific Notes: Water *SVOCs per semi-annual list W 1358 W W 8/15/11 0000 Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Disposal By Lab Archive For ☐ Flammable Skin Irritant Return To Client Special Instructions/QC Requirements & Comments: Level 4 Data Package TEMP 0.8°C, 0.4°C Relinquished by: Company: 8/15/11 URS Relinquished by:

ARCHIVE

Savannah

5102 LaRoche Avenue Savannah, GA 31404

Chain of Custody Record

TestAmerica THE LEADER IN ENVIRONMENTAL TESTING

phone 912.354.7858 fax 912.352.0165 TestAmerica Laboratories, Inc. Client Contact Project Manager: Dave Palmer Site Contact: Nathan McNurlen COC No: URS Corporation Tel/Fax: (314) 743-4154 Lab Contact: Lidva Gulizia Carrier: COCs 1001 Highlands Plaza Drive West, Suite 300 Analysis Turnaround Time Job No. St. Louis, MO 63110 Calendar (C) or Work Days (W) 21562682.00001 (314) 429-0100 TAT if different from Belov CX SDG No. (314) 429-0462 FAX 2 weeks Project Name: 3Q11 LTM GW Sampling I week Site: Solutia WG Krummrich Facility 2 days PO# 21562682 I day Sample Sample Sample Date Time Type Matrix Cont. Sample Identification Sample Specific Notes: 180-05-MW-20-081 Water 14 650 *SVOCs per semi-annual list 8/16/11 W 2 0520 8/16/11 1050 W 1050 1305 1305 1305 W 1305 MW-5D-0811-MSD 135 W W 1654-MW-30-0811-ER 2 TR-2 Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other 1 1 1 3,1 2 4 Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Unknown Non-Hazard Archive For Flammable Skin Irritant Return To Client Disposal By Lab Months Special Instructions/QC Requirements & Comments: Level 4 Data Package 680-71445 TEMP 3.8°C, 0.9°C, 1.0°C Received by: Date/Time: Relinquished by: Date/Time: 1705 URS Relinguished by Company: 8/10/1, 173D Relinquished by: Received by:

Page 73 of 77

Savannah

5102 LaRoche Avenue

Chain of Custody Record

TestAmerica

Savannah, GA 31404 phone 912.354.7858 fax 912.352.0165 TestAmerica Laboratories, Inc. Client Contact Project Manager: Dave Palmer Site Contact: Nathan McNurlen Date: COC No: Tel/Fax: (314) 743-4154 **URS** Corporation Lab Contact: Lidya Gulizia Carrier: COCs 1001 Highlands Plaza Drive West, Suite 300 **Analysis Turnaround Time** Job No. St. Louis, MO 63110 Calendar (C) or Work Days (W) 21562682.00001 (314) 429-0100 Phone TAT if different from Below 故 SDG No. FAX (314) 429-0462 Project Name: 3Q11 LTM GW Sampling 1 week Site: Solutia WG Krummrich Facility 2 days PO# 2156768Z 1 day Sample Sample Sample Date Time Sample Identification Type Matrix Sample Specific Notes: BSA-MW-40-0811 alrila Water 0950 *SVOCs per semi-annual list 8/17/16 W 2 W 6 2 W W SIMI Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Possible Hazard Identification Flammable Unknown Disposal By Lab Archive For Skin Irritant Return To Client Non-Hazard Special Instructions/QC Requirements & Comments: Level 4 Data Package 2.0/3,000 680-71493 Received by: Show Colo Relinquished by: Company: Company: TH 8/17/11/120 URS Relinquished by: Company: Company: 9117/11/805 777 Received by Relinquished by: Company: 3/13/11 74 SW 0937

Login Sample Receipt Checklist

Client: Solutia Inc.

Job Number: 680-71407-1

SDG Number: KPS065

Login Number: 71407

Creator: Swafford, Frances

List Source: TestAmerica Savannah

List Number: 1

Question Radioactivity either was not measured or, if measured, is at or below

background The cooler's custody seal, if present, is intact.

The cooler or samples do not appear to have been compromised or

tampered with.

Samples were received on ice. Cooler Temperature is acceptable.

Cooler Temperature is recorded.

COC is present.

COC is filled out in ink and legible.

COC is filled out with all pertinent information.

Is the Field Sampler's name present on COC?

There are no discrepancies between the sample IDs on the containers and

the COC.

Samples are received within Holding Time.

Sample containers have legible labels.

Containers are not broken or leaking.

Sample collection date/times are provided.

Appropriate sample containers are used.

Sample bottles are completely filled.

Sample Preservation Verified.

There is sufficient vol. for all requested analyses, incl. any requested

MS/MSDs

VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.

Multiphasic samples are not present.

Samples do not require splitting or compositing.

Residual Chlorine Checked.

Answer Comment N/A

True

True

True Rec'd 2 coolers on ice.

True

True 0.8 and 0.4 C

True True

True

N/A True

True

True

False rec'd one It broken for -BSA-MW-1S.

True True

True True

True

True

N/A N/A

N/A

Insufficient volume received for MS/MSD.

Page 74 of 77

SEP 2 2 20

S EPA ARCHIVE DOCUMEN

Login Sample Receipt Checklist

Client: Solutia Inc.

Job Number: 680-71407-1

SDG Number: KPS065

List Source: TestAmerica Savannah

Login Number: 71445

List Number: 1

Creator: Swafford, Frances

oreator. Swanora, Frances		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	3 coolers rec'd on ice
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	3.0, 0.9, 1.0 C
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	ē
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

SEP 22 2011

MM

US EPA ARCHIVE DOCUMENT

Login Sample Receipt Checklist

Client: Solutia Inc.

Job Number: 680-71407-1

SDG Number: KPS065

Login Number: 71493

List Number: 1

Creator: Conner, Keaton

List Source: TestAmerica Savannah

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	2 coolers rec'd on ice
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.0 and 3.0 C
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	pH >2 A6/B6/H1/H2/H3/H4/H5
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

SER 22 2011

Certification Summary

Client: Solutia Inc.

Project/Site: WGK LTM - 3Q11 - AUG 2011

TestAmerica Job ID: 680-71407-1

SDG: KPS065

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica Savannah	A2LA	DoD ELAP		0399-01
TestAmerica Savannah	A2LA	ISO/IEC 17025		399.01
TestAmerica Savannah	Alabama	State Program	4	41450
TestAmerica Savannah	Arkansas	Arkansas DOH	6	N/A
TestAmerica Savannah	Arkansas	State Program	6	88-0692
TestAmerica Savannah	California	NELAC	9	3217CA
TestAmerica Savannah	Colorado	State Program	8	N/A
TestAmerica Savannah	Connecticut	State Program	1	PH-0161
TestAmerica Savannah	Delaware	State Program	3	N/A
TestAmerica Savannah	Florida	NELAC	4	E87052
TestAmerica Savannah	Georgia	Georgia EPD	4	N/A
TestAmerica Savannah	Georgia	State Program	4	803
TestAmerica Savannah	Guam	State Program	9	09-005r
TestAmerica Savannah	Hawaii	State Program	9	N/A
TestAmerica Savannah	Illinois	NELAC	5	200022
TestAmerica Savannah	Indiana	State Program	5	N/A
TestAmerica Savannah	lowa	State Program	7	353
TestAmerica Savannah	Kentucky	Kentucky UST	4	18
TestAmerica Savannah	Kentucky	State Program	4	90084
TestAmerica Savannah	Louisiana	NELAC	6	LA100015
TestAmerica Savannah	Louisiana	NELAC	6	30690
TestAmerica Savannah	Maine	State Program	1	GA00006
TestAmerica Savannah	Maryland	State Program	3	250
TestAmerica Savannah	Massachusetts	State Program	1	M-GA006
TestAmerica Savannah	Michigan	State Program	5	9925
TestAmerica Savannah	Mississippi	State Program	4	N/A
TestAmerica Savannah	Montana	State Program	8	CERT0081
TestAmerica Savannah	Nebraska	State Program	7	TestAmerica-Savannah
TestAmerica Savannah	New Jersey	NELAC	2	GA769
TestAmerica Savannah	New Mexico	State Program	6	N/A
TestAmerica Savannah	New York	NELAC	2	10842
ГestAmerica Savannah	North Carolina	North Carolina DENR	4	269
TestAmerica Savannah	North Carolina	North Carolina PHL	4	13701
TestAmerica Savannah	Pennsylvania	NELAC	3	68-00474
TestAmerica Savannah	Puerto Rico	State Program	2	GA00006
TestAmerica Savannah	Rhode Island	State Program	1	LAO00244
TestAmerica Savannah	South Carolina	State Program	4	98001
FestAmerica Savannah	Tennessee	State Program	4	TN02961
TestAmerica Savannah	Texas	NELAC	6	T104704185-08-TX
TestAmerica Savannah	USDA	USDA		SAV 3-04
restAmerica Savannah	Vermont	State Program	1	87052
TestAmerica Savannah	Virginia	NELAC Secondary AB	3	460161
TestAmerica Savannah	Virginia	State Program	3	302
TestAmerica Savannah	Washington	State Program	10	C1794
TestAmerica Savannah	West Virginia	West Virginia DEP	3	94
TestAmerica Savannah	West Virginia	West Virginia DHHR (DW)	3	9950C
TestAmerica Savannah	Wyoming	State Program	8	8TMS-Q

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

SEP 22 201

TestAmerica Savannah

Appendix E Microbial Insights Data Package

2340 Stock Creek Blvd. Rockford TN 37853-3044 Phone: (865) 573-8188 Fax: (865) 573-8133 Email: info@microbe.com

Client: Dave Palmer Phone: (314) 743-4154

URS Corp

1001 Highlands Plaza Dr. West

Suite 300

St. Louis, MO 63110 Fax: (314) 429-0462

Client Project #: 21562682.00001 Client Project Name: Solutia WG Krummrich Long Term Monit

Purchase Order #:

Analysis Requested: PLFA, Stable Isotope Probing

Reviewed By:

Swan & Leuris

NOTICE: This report is intended only for the addressee shown above and may contain confidential or privileged information. If the recipient of this material is not the intended recipient or if you have received this in error, please notify Microbial Insights, Inc. immediately. The data and other information in this report represent only the sample(s) analyzed and are rendered upon condition that it is not to be reproduced without approval from Microbial Insights, Inc. Thank you for your cooperation.

MICROBIAL INSIGHTS, INC.

2340 Stock Creek Blvd. Rockford, TN 37853-3044

Tel. (865) 573-8188 Fax. (865) 573-8133

Client: **URS Corp**

Solutia WG Krummrich Long Term Monitoring Project:

MI Project Number: Date Received:

040IH

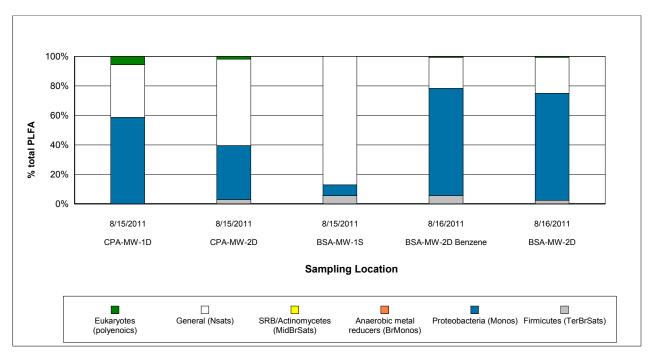
08/16/2011

PLFA

Sample Information


Sample Name:	CPA-MW-1D	CPA-MW-2D	BSA-MW-1S	Benzene 15/2011 08/16/2011 08/16 Bio-Trap Adv. Bio-Trap Std. Bi BJ BJ BJ B E+06 4.11E+05 2.05E+05 5.62 2.37 72.75 72.69 0.00 0.00 0.00 0.00	BSA-MW-2D
Sample Date:	08/15/2011	08/15/2011	08/15/2011	08/16/2011	08/16/2011
Sample Matrix:	Std. Bio-Trap	Std. Bio-Trap	Std. Bio-Trap	•	Std. Bio-Trap
Analyst:	BJ	BJ	BJ	BJ	BJ
Biomass Concentrations					
Total Biomass (cells/bead)	6.51E+04	2.12E+05	1.00E+06	4.11E+05	2.05E+05
Community Structure (% total PLFA)					
Firmicutes (TerBrSats)	0.00	2.94	5.52	5.62	2.37
Proteobacteria (Monos)	58.63	36.57	7.32	72.75	72.69
Anaerobic metal reducers (BrMonos)	0.00	0.00	0.00	0.00	0.00
SRB/Actinomycetes (MidBrSats)	0.00	0.00	0.00	0.00	0.00
General (Nsats)	35.77	58.69	87.18	21.01	24.28
Eukaryotes (polyenoics)	5.62	1.80	0.00	0.63	0.67
Physiological Status (Proteobacteria o	nly)				
Slowed Growth	0.35	0.22	0.15	0.08	0.15
Decreased Permeability	0.12	0.07	0.25	0.07	0.09

Legend:
NA = Not Analyzed NS = Not Sampled


PLFA

2340 Stock Creek Blvd. Rockford, TN 37853-3044 Tel. (865) 573-8188 Fax. (865) 573-8133

Client:URS CorpMI Project Number:040IHProject:Solutia WG Krummrich Long Term MonitoringDate Received:08/16/2011

Figure 1. Biomass content is presented as a cell equivalent based on the total amount of phospholipid fatty acids (PLFA) extracted from a given sample. Total biomass is calculated based upon PLFA attributed to bacterial and eukaryotic biomass

Figure 2. Relative percentages of total PLFA structural groups in the samples analyzed. Structural groups are assigned according to PLFA chemical structure, which is related to fatty acid biosynthesis.

MICROBIAL INSIGHTS, INC.

2340 Stock Creek Blvd. Rockford, TN 37853-3044

Tel. (865) 573-8188 Fax. (865) 573-8133

URS Corp

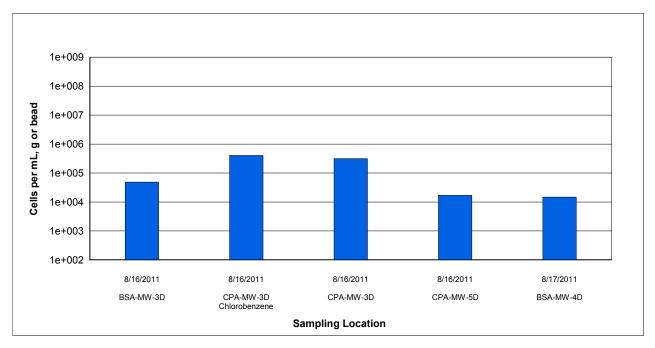
MI Project Number: 040IH **PLFA**

Solutia WG Krummrich Long Term Monitoring Date Received: 08/16/2011

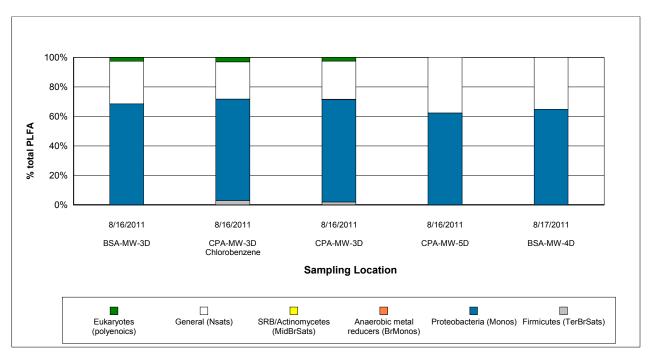
Sample Information

Client:

Project:


Sample Name:	BSA-MW-3D	CPA-MW-3D	CPA-MW-3D	CPA-MW-5D	BSA-MW-4D
Sample Date:	08/16/2011	08/16/2011	08/16/2011	08/16/2011	08/17/2011
Sample Matrix:	Std. Bio-Trap	Adv. Bio-Trap	Std. Bio-Trap	Std. Bio-Trap	Std. Bio-Trap
Analyst:	BJ	BJ	BJ	BJ	BJ
Biomass Concentrations					
Sample Date: 08/16/2011 08/16/2014 08/16/2014 08/16	1.47E+04				
Community Structure (% total PLFA)					
Firmicutes (TerBrSats)	0.00	2.96	1.99	0.00	0.00
Proteobacteria (Monos)	68.55	68.81	69.45	62.36	64.86
Anaerobic metal reducers (BrMonos)	0.00	0.00	0.25	0.00	0.00
SRB/Actinomycetes (MidBrSats)	0.00	0.00	0.00	0.00	0.00
General (Nsats)	28.91	25.22	25.77	37.64	35.14
Eukaryotes (polyenoics)	2.54	3.01	2.53	0.00	0.00
Physiological Status (Proteobacteria o	nly)				
Slowed Growth	0.16	0.06	0.05	0.24	0.00
Decreased Permeability	0.00	0.21	0.19	0.00	0.00

Legend:
NA = Not Analyzed NS = Not Sampled


PLFA

2340 Stock Creek Blvd. Rockford, TN 37853-3044 Tel. (865) 573-8188 Fax. (865) 573-8133

Client:URS CorpMI Project Number:040IHProject:Solutia WG Krummrich Long Term MonitoringDate Received:08/16/2011

Figure 1. Biomass content is presented as a cell equivalent based on the total amount of phospholipid fatty acids (PLFA) extracted from a given sample. Total biomass is calculated based upon PLFA attributed to bacterial and eukaryotic biomass

Figure 2. Relative percentages of total PLFA structural groups in the samples analyzed. Structural groups are assigned according to PLFA chemical structure, which is related to fatty acid biosynthesis.

MICROBIAL INSIGHTS, INC.

2340 Stock Creek Blvd. Rockford, TN 37853-3044

Tel. (865) 573-8188 Fax. (865) 573-8133

Client: URS Corp

Project: Solutia WG Krummrich Long Term Monitoring

MI Project Number:
Date Received:

040IH 08/16/2011

PLFA

Sample Information

Sample Date:

Sample Matrix:

Analyst:

Sample Name: CPA-MW-4D

08/17/2011

BSA-MW-5D 08/17/2011

Std. Bio-Trap

Std. Bio-Trap

BJ

BJ

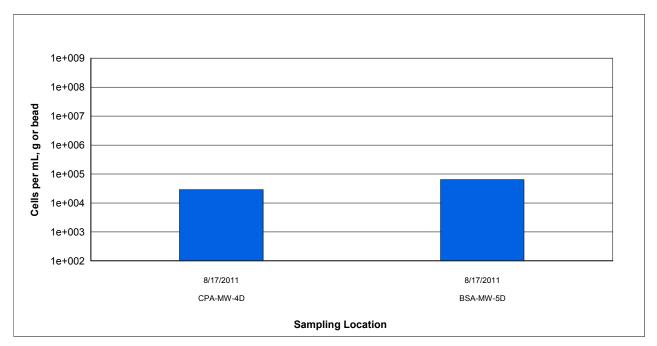
Biomass Concentrations

Total Biomass (cells/bead) 2.89E+04 6.39E+04

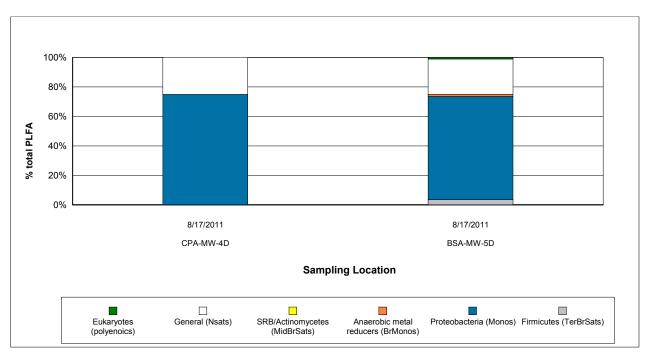
Community Structure (% total PLFA)

Firmicutes (TerBrSats) 0.00 3.56 Proteobacteria (Monos) 74.91 69.98 Anaerobic metal reducers (BrMonos) 0.00 1.40 SRB/Actinomycetes (MidBrSats) 0.00 0.00 General (Nsats) 25.10 23.95 Eukaryotes (polyenoics) 0.00 1.11

Physiological Status (Proteobacteria only)


Slowed Growth 0.10 0.07
Decreased Permeability 0.00 0.00

Legend:


NA = Not Analyzed NS = Not Sampled

2340 Stock Creek Blvd. Rockford, TN 37853-3044 Tel. (865) 573-8188 Fax. (865) 573-8133

Client:URS CorpMI Project Number:040IHProject:Solutia WG Krummrich Long Term MonitoringDate Received:08/16/2011

Figure 1. Biomass content is presented as a cell equivalent based on the total amount of phospholipid fatty acids (PLFA) extracted from a given sample. Total biomass is calculated based upon PLFA attributed to bacterial and eukaryotic biomass

Figure 2. Relative percentages of total PLFA structural groups in the samples analyzed. Structural groups are assigned according to PLFA chemical structure, which is related to fatty acid biosynthesis.

2340 Stock Creek Blvd. Rockford TN 37853-3044 Phone: (865) 573-8188 Fax: (865) 573-8133 Email: info@microbe.com

Client Project #: 21562682.00001 Client Project Name: Solutia WG Krummrich Long Term Monit

Purchase Order #:

Comments: The total PLFA biomass for samples BSA-MW-2D, CPA-MW-5D and CPA-MW-4D was

below the laboratory PQL. The total PLFA biomass for sample BSA-MW-4D was below

the laboratory LQL.

dave palmer@urscorp.com

Phone: 314-743-4154

Email:

SITE LOGIC Report

Stable Isotope Probing (SIP) Study

Contact: Dave Palmer

Address: URS Corporation – St. Louis MO

1001 Highlands Plaza Drive West

Suite 300

St. Louis, MO 63110

MI Identifier: 040IH Report Date: October 3, 2011

Project: Solutia WG Krummrich Long Term Monitoring

Comments:

NOTICE: This report is intended only for the addressee shown above and may contain confidential or privileged information. If the recipient of this material is not the intended recipient or if you have received this in error, please notify Microbial Insights, Inc. immediately. The data and other information in this report represent only the sample(s) analyzed and are rendered upon condition that it is not to be reproduced without approval from Microbial Insights, Inc. Thank you for your cooperation.

Executive Summary

A Stable Isotope Probing (SIP) study was performed to determine whether biodegradation of benzene and chlorobenzene is occurring under existing site conditions. Bio-Trap® samplers baited with ¹³C labeled benzene or ¹³C labeled chlorobenzene were deployed in monitoring wells BSA-MW-2D and CPA-MW-3D for 28 days. Following field deployment, the Bio-Traps were recovered to quantify ¹³C incorporation into biomass and dissolved inorganic carbon (DIC). A complete summary of the results is provided in Table 1.

- Quantification of ¹³C enriched biomass demonstrated utilization of the ¹³C benzene and the ¹³C chlorobenzene. This is conclusive evidence that biodegradation is occurring under the site conditions which were present during the deployment period.
- Little to no mineralization of the ¹³C compounds occurred during the deployment period.
- There was statistically significant loss of both the ¹³C benzene and ¹³C chlorobenzene observed.
- A moderate level (~10⁵ cells/bead) of biomass was detected in the both the ¹³C benzene sampler and the ¹³C chlorobenzene sampler.

2340 Stock Creek Blvd. Rockford, TN 37853-3044 Phone: 865.573.8188

Fax: 865.573.8133 www.microbe.com

Overview of Approach

Stable Isotope Probing (SIP)

Stable isotope probing (SIP) is an innovative method to track the environmental fate of a "labeled" contaminant of concern to unambiguously demonstrate biodegradation. Two stable carbon isotopes exist in nature – carbon 12 (12C) which accounts for 99% of carbon and carbon 13 (13C) which is considerably less abundant (~1%). With the SIP method, the Bio-Trap® sampler is baited with a specially synthesized form of the contaminant containing ¹³C labeled carbon. Since ¹³C is rare, the labeled compound can be readily differentiated from the contaminants present at the site. Following deployment, the Bio-Trap® is recovered and three approaches are used to conclusively demonstrate biodegradation of the contaminant of concern.

- The loss of the labeled compound provides an estimate of the degradation rate (% loss of ¹³C).
- Quantification of ¹³C enriched phospholipid fatty acids (PLFA) indicates incorporation into microbial biomass.
- Quantification of ¹³C enriched dissolved inorganic carbon (DIC) indicates contaminant mineralization.

Phospholipid Fatty Acids (PLFA): PLFA are a primary component of the membrane of all living cells including bacteria. PLFA decomposes rapidly upon cell death (1, 2), so the total amount of PLFA present in a sample is indicative of the viable biomass. When combined with stable isotope probing (SIP), incorporation of ¹³C into PLFA is a conclusive indicator of biodegradation.

Some organisms produce "signature" types of PLFA allowing quantification of important microbial functional groups (e.g. iron reducers, sulfate reducers, or fermenters). The relative proportions of the groups of PLFA provide a "fingerprint" of the microbial community. In addition, Proteobacteria modify specific PLFA during periods of slow growth or in response to environmental stress providing an index of their health and metabolic activity.

Results

Table 1. Summary of the results obtained from the Bio-Trap® Units. Interpretation guidelines and definitions are found later in the document.

Sample Name	BSA MW 2D Benzene	CPA MW 3D Chlorobenzene
¹³ C Contaminant Loss		
¹³ C Benzene Pre-deployment (μg/bd)	185 ± 12	
¹³ C Benzene Post-deployment (µg/bd)	114 ± 9	
¹³ C Chlorobenzene Pre-deployment (μg/bd)		83 ± 12
¹³ C Chlorobenzene Post-deployment (μg/bd)		54 ± 11
Biomass & ¹³ C Incorporation		
Total Biomass (Cells/bd)	4.11E+05	4.04E+05
¹³ C Enriched Biomass (Cells/bd)	7.79E+03	3.26E+01
Average PLFA Del (‰)	674	123
Maximum PLFA Del (‰)	2421	123
¹³ C Mineralization		
DIC Del (‰)	-18	-30
% 13C	1.07	1.06
Community Structure (% total PLFA)		
Firmicutes (TerBrSats)	5.6	3.0
Proteobacteria (Monos)	72.8	68.8
Anaerobic metal reducers (BrMonos)	0.0	0.0
Actinomycetes (MidBrSats)	0.0	0.0
General (Nsats)	21.0	25.2
Eukaryotes (Polyenoics)	0.6	3.0
Physiological Status (Proteobacteria only)		
Slowed Growth	0.08	0.06
Decreased Permeability	0.07	0.21

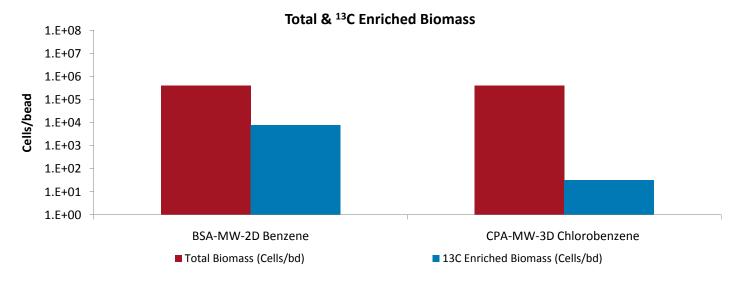
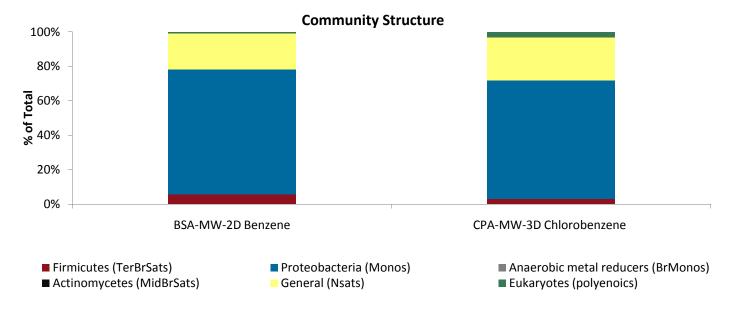



Figure 1. Biomass content is presented as a cell equivalent based on the total amount of phospholipid fatty acids (PLFA) extracted from a given sample. Total biomass is calculated based upon PLFA attributed to bacterial and eukaryotic biomass (associated with higher organisms).

Figure 2. Relative percentages of total PLFA structural groups in the samples analyzed. Structural groups are assigned according to PLFA chemical structure, which is related to fatty acid biosynthesis. See the table in the interpretation section for detailed descriptions of the structural groups.

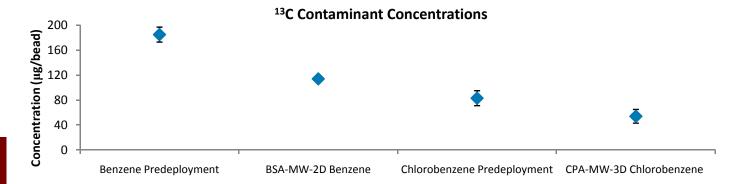
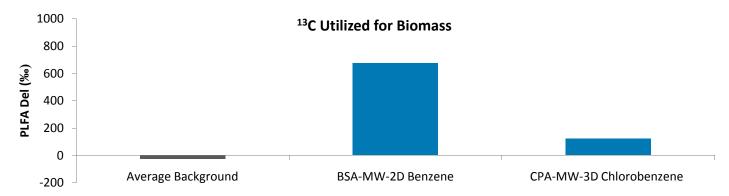
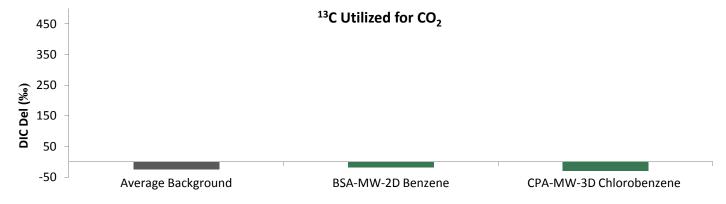




Figure 3. Comparison of Pre-deployment concentrations loaded on Bio-Sep beads to the concentrations detected after incubation.

Figure 4. Comparison of the average Del value obtained from PLFA biomarkers from each Bio-Trap® unit to the average background Del observed in samples not exposed to ¹³C enriched compounds.

Figure 5. Comparison of the Del value obtained from DIC from each Bio-Trap® unit to the average background Del observed in samples not exposed to ¹³C enriched compounds.

Interpretation

Interpretation of the results of the SIP Bio-Trap® study must be performed with due consideration of site conditions, site activities, and the desired treatment mechanism. The following discussion describes interpretation of results in general terms and is meant to serve as a guide.

Contaminant Concentration: Bio-Traps® are baited with a ¹³C labeled contaminant of concern and a pre-deployment concentration is determined prior to shipping. Following deployment, Bio-Traps® are recovered for analysis including measurement of the concentration of the ¹³C labeled contaminant remaining. Pre- and post-deployment concentrations are used to calculate percent loss.

Biomass Concentrations: PLFA analysis is one of the most reliable and accurate methods available for the determination of viable (live) biomass. Phospholipids break down rapidly upon cell death, so biomass calculations based on PLFA content do not include "fossil" lipids from dead cells. Total biomass (cells/bead) is calculated from total PLFA using a conversion factor of 20,000 cells/pmole of PLFA. When making comparisons between wells, treatments, or over time, differences of one order of magnitude or more are considered significant.

	Total Biomass	
Low	Moderate	High
10 ³ to 10 ⁴ cells	10 ⁵ to 10 ⁶ cells	10 ⁷ to 10 ⁸ cells

For SIP studies, the ¹³C enriched PLFA is also determined to conclusively demonstrate contaminant biodegradation and quantify incorporation into biomass as a result of the ¹³C being used for cellular growth. The % ¹³C incorporation (¹³C enriched biomass/total biomass) is also provided in the data summary table, but the value must be interpreted carefully especially when comparing wells or treatments. Typically, biodegradation of a contaminant of concern is performed by a small subset of the total microbial community. For Bio-Traps® with large total biomass, the % ¹³C incorporation value could be low despite significant ¹³C labeled biomass and loss of the compound. The % ¹³C incorporation should be viewed in light of total biomass, percent loss, and dissolved inorganic carbon (DIC) results.

 13 C enrichment data is often reported as a del value. The del value is the difference between the isotopic ratio (13 C/ 12 C) of the sample (R_x) and a standard (R_{std}) normalized to the isotopic ratio of the standard (R_{std}) and multiplied by 1,000 (units are parts per thousand, denoted ‰).

 R_{std} is the naturally occurring isotopic ratio and is approximately 0.011180 (roughly 1% of naturally occurring carbon is 13 C). The isotopic ratio, R_x , of PLFA is typically less than the R_{std} under natural conditions, resulting in a del value between -20 and -30‰. For a SIP Bio-Trap® study, biodegradation and incorporation of the 13 C labeled compound into PLFA results in a larger 13 C/ 12 C ratio (R_x) and thus del values greater than under natural conditions. Typical PLFA del values are provided below.

	PLFA Del (‰)	
Low	Moderate	High
0 to 100	100 to 1,000	>1,000

2340 Stock Creek Blvd. Rockford, TN 37853-3044 Phone: 865.573.8188 Fax: 865.573.8133

www.microbe.com

Dissolved Inorganic Carbon (DIC): Often, bacteria can utilize the 13 C labeled compound as both a carbon and energy source. The 13 C portion used as a carbon source for growth can be incorporated into PLFA as discussed above, while the 13 C used for energy is oxidized to 13 CO₂ (mineralized).

 13 C enriched CO₂ data is often reported as a del value as described above for PLFA. Under natural conditions, the R_x of CO₂ is approximately the same as R_{std} (0.01118 or about 1.1% 13 C). For an SIP Bio-Trap® study, mineralization of the 13 C labeled contaminant of concern would lead to a greater value of R_x (increased 13 CO₂ production) and thus a positive del value. As with PLFA, del values between 0 and 100‰ are considered low, values between 100 and 1,000‰ are considered moderate, and values greater than 1,000‰ are considered high. Thus DIC 13 C are considered low if the value is less than 1.23%, moderate if between 1.23 and 2.24%, and high if greater than 2.24%.

Dissolve	d Inorganic Carbon (DIC) Del an	d % ¹³ C
Low	Moderate	High
0 to 100	100 to 1,000	>1,000
1.11 to 1.23%	1.23 to 2.24%	>2.24%

Community Structure (% total PLFA): Community structure data is presented as a percentage of PLFA structural groups normalized to the total PLFA biomass. The relative proportions of the PLFA structural groups provide a "fingerprint" of the types of microbial groups (e.g. anaerobes, sulfate reducers, etc.) present and therefore offer insight into the dominant metabolic processes occurring at the sample location. Thorough interpretation of the PLFA structural groups depends in part on an understanding of site conditions and the desired microbial biodegradation pathways. For example, an increase in mid chain branched saturated PLFA (MidBrSats), indicative of sulfate reducing bacteria (SRB) and *Actinomycetes*, may be desirable at a site where anaerobic BTEX biodegradation is the treatment mechanism, but would not be desirable for a corrective action promoting aerobic BTEX or MTBE biodegradation. The following table provides a brief summary of each PLFA structural group and its potential relevance to bioremediation.

Table 2. Description of PLFA structural groups.

PLFA Structural Group	General classification	Potential Relevance to Bioremediation Studies
Monoenoic (Monos)	Abundant in Proteobacteria (Gram negative bacteria), typically fast growing, utilize many carbon sources, and adapt quickly to a variety of environments.	Proteobacteria is one of the largest groups of bacteria and represents a wide variety of both aerobes and anaerobes. The majority of Hydrocarbon utilizing bacteria fall within the Proteobacteria
Terminally Branched Saturated (TerBrSats)	Characteristic of Firmicutes (Low G+C Gram-positive bacteria), and also found in Bacteriodes, and some Gramnegative bacteria (especially anaerobes).	Firmicutes are indicative of presence of anaerobic fermenting bacteria (mainly <i>Clostridia/Bacteriodes</i> -like), which produce the H ₂ necessary for reductive dechlorination
Branched Monoenoic (BrMonos)	Found in the cell membranes of micro-aerophiles and anaerobes, such as sulfate- or iron-reducing bacteria	In contaminated environments high proportions are often associated with anaerobic sulfate and iron reducing bacteria
Mid-Chain Branched Saturated (MidBrSats)	Common in sulfate reducing bacteria and also Actinobacteria (High G+C Gram-positive bacteria).	In contaminated environments high proportions are often associated with anaerobic sulfate and iron reducing bacteria
Normal Saturated (Nsats)	Found in all organisms.	High proportions often indicate less diverse populations.
Polyenoic	Found in eukaryotes such as fungi, protozoa, algae, higher plants, and animals.	Eukaryotic scavengers will often rise up and prey on contaminant utilizing bacteria

2340 Stock Creek Blvd. Rockford, TN 37853-3044 Phone: 865.573.8188 Fax: 865.573.8133

www.microbe.com

Physiological Status (*Proteobacteria*): Some *Proteobacteria* modify specific PLFA as a strategy to adapt to stressful environmental conditions (3, 4). For example, *cis* monounsaturated fatty acids may be modified to cyclopropyl fatty acids during periods of slowed growth or modified to *trans* monounsaturated fatty acids to decrease membrane permeability in response to environmental stress. The ratio of product to substrate fatty acid thus provides an index of their health and metabolic activity. In general, status ratios greater than 0.25 indicate a response to unfavorable environmental conditions.

Glossary

Del: A Del value is the difference between the isotopic ratio (13 C/ 12 C) of the sample (R_x) and a standard (R_{std}) normalized to the isotopic ratio of the standard (R_{std}) and multiplied by 1,000 (units are parts per thousand denoted ‰).

 $Del = (R_x - R_{std})/R_{std} \times 1000$

References

- 1. White, D.C., W.M. Davis, J.S. Nickels, J.D. King, and R.J. Bobbie. 1979. Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40:51-62.
- 2. White, D.C. and D.B. Ringelberg. 1995. Utility of signature lipid biomarker analysis in determining in situ viable biomass. In P.S. Amy and D.L. Halderman (eds.) The microbiology of the terrestrial surface. CRC Press, Boca Raton.
- 3. Guckert, J.B., M.A. Hood, and D.C. White. 1986. Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of *Vibrio chloerae*: increases in the trans/cis ratio and proportions of cyclopropyl fatty acids. Applied and Environmental Microbiology. 52:794-801.
- 4. Tsitko, I.V., G. M. Zaitsev, A. G. Lobanok, and M.S. Salkinoja-Salonen. 1999. Effect of aromatic compounds on cellular fatty acid composition of *Rhodococcus opacus*. Applied and Environmental Microbiology. 65:853-855.

2340 Stock Creek Blvd. Rockford, TN 37853-3044 Phone: 865.573.8188

Fax: 865.573.8133 www.microbe.com

REPORT TO: Reports will be provi below will require pri	ded to the contact(s) listed below. Parties other than the contact(s) listed or approval.	INVOICE TO: For Invoices paid by a third corresponding reference No.	party it is imperative that contact information & be provided.	Microbial insigh
Name:	Dave Palmer	Name:	(4 same)	- Island Goldin Island
Company:	URS Corporation	Company:		2340 Stock Creek Blvd.
Address:	1001 Highlands Plaza Dr. W. Ste300	Address:		Rockford, TN 37853-3044
	St. Lows, mo 63110			phone (865) 573-8188
				fax: (865) 573-8133
email:	Doue - Palmer Quiscons, com	email:		email: info@microbe.com
Phone:	(814) 374 - 9032	Phone: (www.microbe.com
Fax:	(314) U29- 046Z	Fax:		
	* 0			Please Check One:
Project Manager:	Dove Palmet	Purchase Order No.		☐ More samples to follow
Project Name:	Solutia WG - Krummrich - Long Term m	Subcontract No.		No Additional Samples
Project No.:		- millione		
		9		Saturday Delivery
Report Type:	Standard (default) Comprehensive (15% surcharge)	Historical (30%	surcharge)	Please see sampling protocol for instructions

Please contact us prior to submitting samples regarding questions about the analyses you are requesting at (865) 573-8188 (8:00 am to 4:00 pm M-F). After these hours please call (865) 300-8053.

	Sample Informati	ion								C	ENS	US:	Please	e selec	t the t	target o	rganis	m/gen	10														
MI ID (Laboratory Use Only)	Sample Name	Date Sampled	Time Sampled	Matrix	PLFA	VFA	WE/E	DGGE+3ID	DGGE+SID	qDHC (Dehalococcoides)	DHC Functional genes	qDHB (Dehalobacter)	qDSM (Desulfuromonas)	qDSB (Desulfitobacterium)	qEBAC (Total)	qDSR (SRBs only)	qSRB/IRB	qMGN (methanogens)	qMOB (methanotrophs)	qDNF (Dentrifying)	qAOB (ammonia oxidizing)	qPM1 (MTBE aerobic)	qTOD (Intial PAHs aerobic)	qCAT (Intermediate PAHs aerobic)	qBSS (Toluen/Xylene Anaerabic)	qNAH (Napthalene aerobic)	add, qPCR:	add, qPCR;	add. qPCR:	RNA (Expression Option)*	Other:	Other:	Other:
DYOTHI	CPA-mo-ID	8/15/11	1450																														
2	CPA-MW-ZD		1302	1	K																					4							
3	CPA-MW-ZD BAS-MW-15	V	0940	V	*																												
*			^							+	-			-	-	-	-	+	+	-	-	-	+	_	_	_	-	_	_	-	-	-	\dashv
		10/6	\ \																														
		100		1	0	1	1	_																									\top
		C00			1	9				T									\neg				T										
										T													1										
										T																							
									-	+	-								1				1			-							
elinquished by:	won Jallen	Date: 2	6/09		_			Recei	ived by	n			-	2		Date		0	1.		-	81				-							

In order for analysis to be completed correctly, it is vital that chain of custody is filled out correctly & that all relative information is provided. Easiure to provide sufficient and/or correct information regarding reporting, invoicing & analyses requested information may result in delays for which MI will not be liable. *additional cost and sample preservation are associated with RNA samples.

REPORT TO: Reports will be provid below will require prio Name: Company: Address:	Dave Palmer	laza Di		s) listed		i (For Incorres	spondir :: pany:	paid	by a therence	No. b	e pro	vided	nperat I.		nat conf	act inf	ormati	ion &		_		234 Roc	0 Stoo	ck Cre	eek B 87853	lvd. -304		nsi	igh	ts
email: Phone: Fax:	Dave Palme (@ USC (3/4) 429-0100 (3/4) 429-0462		^		-	F	email Phon Fax:	e:			()									=		fax: ema www	(865) ail: inf w.micr	573- fo@m robe.c	-8133 nicrobe com	e.con				
Project Manager: Project Name: Project No.:	Dave Palmer Solution WGK LT 21562682	M 30	211					nase O ontrac		No.								v.			_			Mor No /	Addit	tiona					
Report Type: Please contact us price	Standard (default) or to submitting samples regarding qu		ehensive (1					□ Hi:							er the	ese hou	ırs ple	ase ca	all (86:	5) 300)-8053		-	urday ase se			g prot	tocol I	or inst	ructions	í
	Sample Information					3				-		100				arget org					17/5					A	71.0		7		
MI ID (Laboratory Use Only)	4,5 Sample Name	Date Sampled	Time Sampled	Matrix	PLFA	VFA	WEIE	DGGE+3ID		qDHC (Dehalococcoides)	DHC Functional genes	qDHB (Dehalobacter)	qDSM (Desulturomonas)	qDSB (Desulftobacterium)	qEBAC (fotal)	qDSR (SRBs only)	qMGN (methanogens)	qMOB (methanotrophs)	qDNF (Dentrifying)	qAOB (arrmonia oxidizing)	qPMT (MTBE aerobic)	qCAT (Intermediate PAHs aerobic)	qBSS (Toluen/Xylene Anaerobic)	qNAH (Napthalene aerobic)	add. qPCR:	add. qPCR:	add. qPCR:	RNA (Expression Option)*		Other: ChlotoSonZere S1P	Other:
DYOTH A	Met I carl	-411. 1h	0835	Wales	χ		\neg																						X		
7.88	CPA-MW-30	8)16/11	1010	004	/ \	_	\rightarrow	-	_	-	$\overline{}$	\rightarrow	$\overline{}$	_	$\overline{}$	_	_	$\overline{}$	$\overline{}$	$\overline{}$	_	-	+	-	\vdash	-	_		_		-

Relinquished by: Lath Man Date: 8/16/11 17, Deceived by: Fed F Date Provided Sufficient and/operation regarding reporting invoicing & analyses requested

BSA-MW-30

In order for analysis to be completed correctly, it is vital that chain of custody is filled out correctly & that all relative information is provided. Failure to provide sufficient and/or correct information regarding reporting, invoicing & analyses requested information may result in delays for which MI will not be liable. *additional cost and sample preservation are associated with RNA samples.

Airbill # 854522938804

MIID: <u>D40IH</u>

	Sample name	Date	Comments
1			
2			
3			
4	BSA-MW-2D Benzene SIP	8/16	
5	BSA-MW-2D Standard Trap	1	
6	BSA-MW-3D Standard Trap		
7	CPA-MW-3D Chlorobenzene SiP		
8			
9	CPA-MW-5D Standard Trap		
10	•	,	
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23		:	
24			
25			
26 27			
28			
29			
30			
31			
32			
33			
34			-
35			

REPORT TO: Reports will be provide below will require prior Name: Company: Address:	Dave Palmer UPS Colp 1001 Hohlands P		For Incorres	any:	paid b						ative	that c	ontac	t infor	nation	&				2340 Rocki	Stoc ford,	k Cre	ek B 7853	lvd. -304		ins	ig	ht	S					
email: Phone: Fax:	1314) 429-0462							email: Phone: () Fax: ()															fax: (865) 573-8133 email: info@microbe.com www.microbe.com Please Check One:											
Project Manager: Project Name: Project No.:	Dave Palmer Solution W6K L 21562683	TM 36	R 11					nase O		lo.	_													Satur	No A	Addit	iona							
Report Type: Please contact us prio	Standard (default) r to submitting samples regarding qu Sample Information	estions about	ehensive (19					☐ His		:00 am	1 to 4	:00 p	m M-	F). A	100			pleas		865)	300-8	053.		Pleas	se se	e sar	npling	g prot	tocol	for in	struct	tions		
MI ID (Laboratory Use Only)	Sample Name	Date Sampled	Time Sampled	Магіх	PLFA	VFA	WEJE	DGGE+3ID		qDHC (Dehalococcoides)	DHC Functional genes	qDHB (Dehalobacter)	qDSM (Desulturomonas)	qDSB (Desulftobacterium)	qEBAC (Total)	qDSR (SRBs only)	qSRBJIRB	qMGN (methanogens)	qMCB (methanorrophs)	qAOB (arrmonia oxidizing)	qPM1 (MTBE aerobic)	qTOD (Inital PAHs aerobic)	qCAT (intermediate PAHs aerobic)	qBSS (Toluen/Xylene Anaerobic)	qNAH (Napthalene aerobic)	add. qPCR.	add. qPCR:	add. qPCR:	RNA (Expression Option)*	Other:	Other:	Other:	Other:	
D40IH 10	BSA-MW-40 CPA-MW-40	11/11/8	1025	Walx	Υ		7	+	F	F						\exists	1	7	+	F	F				-					H		\dashv	7	
12-		8/17/11	1715	White	X																													

In order for analysis to be completed correctly, it is vital that chain of custody is filled out correctly & that all relative information is provided. Failure to provide sufficient and/or correct information regarding reporting, invoicing & analyses requested information may result in delays for which MI will not be liable. * additional cost and sample preservation are associated with RNA samples.

Fed Ex

Received by:

0730

Relinquished by://

Date:

8/17/11

Ailbill # 854522938215

8/18/11

Comper Erron